Office Applications and Entertainment, Magic Cubes

Vorige Pagina Volgende Pagina Index About the Author

3.8   Pandiagonal/Triagonal Magic Cubes (4 x 4 x 4)

3.8.1 Introduction

The cube shown below is a Pan Diagonal/Triagonal Magic Cube of the 4th order, meaning a Magic Cube for which all (Pan) Diagonals and (Pan) Triagonals sum to the Magic Constant.

It is the first occurring cube while applying the method described in Section 3.12.5 based on the equations deducted in Section 3.8.2 below.

Pandiagonal/Triagonal Magic Cube

Plane 11 (Top)

47 63 31 15
36 52 20 4
46 62 30 14
33 49 17 1

Plane 21 (Left)

33 46 36 47
24 27 21 26
45 34 48 35
28 23 25 22

Plane 31 (Back)

47 63 31 15
26 10 42 58
35 51 19 3
22 6 38 54


Plane 12

26 10 42 58
21 5 37 53
27 11 43 59
24 8 40 56


Plane 22

49 62 52 63
8 11 5 10
61 50 64 51
12 7 9 6


Plane 32

36 52 20 4
21 5 37 53
48 64 32 16
25 9 41 57


Plane 13

35 51 19 3
48 64 32 16
34 50 18 2
45 61 29 13


Plane 23

17 30 20 31
40 43 37 42
29 18 32 19
44 39 41 38


Plane 33

46 62 30 14
27 11 43 59
34 50 18 2
23 7 39 55


Plane 14

22 6 38 54
25 9 41 57
23 7 39 55
28 12 44 60


Plane 24

1 14 4 15
56 59 53 58
13 2 16 3
60 55 57 54


Plane 34

33 49 17 1
24 8 40 56
45 61 29 13
28 12 44 60


As a consequence of the defining properties mentioned above, the cube has also following properties:

  1. Compact : Every 2 x 2 x 2 block of cells (including wrap-around) sums to n*(n3 + 1) = 260 (Cubic Compact).
              The corners of all Sub-Cubes of orders 3 sum to n*(n3 + 1) = 260.

  2. Complete: Every (pan)triagonal contains n/2 complementary pairs spaced n/2 apart along the (pan)triagonal.
              Comparable with Most Perfect Magic Squares as discussed in 'Magic Squares', Section 2.6).

A Pandiagonal/Triagonal Magic Cube can be transformed into another Pandiagonal/Triagonal Magic Cube by moving an orthogonal plane from one side of the cube to the other.

Consequently the cube belongs to a collection {Aijkm} of 43 * 48 = 3072 elements which can be found by means of rotation, reflection or plane movements.

The Class of 48 elements which can be obtained by rotation / reflection of a Pandiagonal/Triagonal Cube is shown in Attachment 3.8.1.

The Class of 64 elements which can be obtained by planar shifts of a Pandiagonal/Triagonal Cube is shown in Attachment 3.8.2. Each cube of Attachment 3.8.1 can be used as a Base for Attachment 3.8.2.

It should be noted that the planar shifts are from left to right (L1, L2, L3), from back to front (B1, B2, B3) and from bottom to top (T1, T2, T3).

3.8.2 Analytic Solution

In general Magic Cubes of order 4 can be represented as follows:

Magic Cube (4 x 4 x 4)

Plane 11 (Top)

a49 a50 a51 a52
a53 a54 a55 a56
a57 a58 a59 a60
a61 a62 a63 a64

Plane 21 (Left)

a61 a57 a53 a49
a45 a41 a37 a33
a29 a25 a21 a17
a13 a9 a5 a1

Plane 31 (Back)

a49 a50 a51 a52
a33 a34 a35 a36
a17 a18 a19 a20
a1 a2 a3 a4


Plane 12

a33 a34 a35 a36
a37 a38 a39 a40
a41 a42 a43 a44
a45 a46 a47 a48


Plane 22

a62 a58 a54 a50
a46 a42 a38 a34
a30 a26 a22 a18
a14 a10 a6 a2


Plane 32

a53 a54 a55 a56
a37 a38 a39 a40
a21 a22 a23 a24
a5 a6 a7 a8


Plane 13

a17 a18 a19 a20
a21 a22 a23 a24
a25 a26 a27 a28
a29 a30 a31 a32


Plane 23

a63 a59 a55 a51
a47 a43 a39 a35
a31 a27 a23 a19
a15 a11 a7 a3


Plane 33

a57 a58 a59 a60
a41 a42 a43 a44
a25 a26 a27 a28
a9 a10 a11 a12


Plane 14

a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16


Plane 24

a64 a60 a56 a52
a48 a44 a40 a36
a32 a28 a24 a20
a16 a12 a8 a4


Plane 34

a61 a62 a63 a64
a45 a46 a47 a48
a29 a30 a31 a32
a13 a14 a15 a16


The equations for a Pan Diagonal/Triagonal Magic Cube of the fourth order can be summarised as follows:

  • All (Pan) Diagonals (96) sum to the Magic Sum (130).

  • All (Pan) Triagonals (64) sum to the Magic Sum (130).

After deduction of the defining equations (160), the following set of linear equations - describing the Pan Diagonal/Triagonal Magic Cubes of the 4th order - can be obtained:

a(54) =             a(56) + a(62) - a(64)
a(53) =             a(55) + a(61) - a(63)
a(52) =        s1 - a(55) - a(58) - a(61)
a(51) =        s1 - a(56) - a(57) - a(62)
a(50) =        s1 - a(55) - a(60) - a(61)
a(49) =        s1 - a(56) - a(59) - a(62)
a(46) =             a(48) - a(58) + a(60)
a(45) =             a(47) - a(57) + a(59)
a(44) =        s1 - a(47) - a(59) - a(64)
a(43) =        s1 - a(48) - a(60) - a(63)
a(42) =        s1 - a(47) - a(59) - a(62)
a(41) =        s1 - a(48) - a(60) - a(61)
a(40) =             a(48) - a(55) + a(63)
a(39) =             a(47) - a(56) + a(64)
a(38) =             a(48) - a(55) - a(58) + a(60) + a(63)
a(37) =             a(47) - a(56) - a(57) + a(59) + a(64)
a(36) =           - a(47) + a(56) + a(57) + a(62) - a(64)
a(35) =           - a(48) + a(55) + a(58) + a(61) - a(63)
a(34) =           - a(47) + a(56) + a(57)
a(33) =           - a(48) + a(55) + a(58)
a(32) =  0.5 * s1 - a(56) - a(62) + a(64)
a(31) =  0.5 * s1 - a(55) - a(61) + a(63)
a(30) =  0.5 * s1 - a(56)
a(29) =  0.5 * s1 - a(55)
a(28) = -0.5 * s1 + a(55) + a(60) + a(61)
a(27) = -0.5 * s1 + a(56) + a(59) + a(62)
a(26) = -0.5 * s1 + a(55) + a(58) + a(61)
a(25) = -0.5 * s1 + a(56) + a(57) + a(62)
a(24) =  0.5 * s1 - a(62)
a(23) =  0.5 * s1 - a(61)
a(22) =  0.5 * s1 - a(64)
a(21) =  0.5 * s1 - a(63)
a(20) =  0.5 * s1 - a(58)
a(19) =  0.5 * s1 - a(57)
a(18) =  0.5 * s1 - a(60)
a(17) =  0.5 * s1 - a(59)
a(16) =  0.5 * s1 - a(48) + a(55) + a(58) - a(60) - a(63)
a(15) =  0.5 * s1 - a(47) + a(56) + a(57) - a(59) - a(64)
a(14) =  0.5 * s1 - a(48) + a(55) - a(63)
a(13) =  0.5 * s1 - a(47) + a(56) - a(64)
a(12) =  0.5 * s1 + a(47) - a(56) - a(57)
a(11) =  0.5 * s1 + a(48) - a(55) - a(58)
a(10) =  0.5 * s1 + a(47) - a(56) - a(57) - a(62) + a(64)
a( 9) =  0.5 * s1 + a(48) - a(55) - a(58) - a(61) + a(63)
a( 8) =  0.5 * s1 - a(48) + a(58) - a(60)
a( 7) =  0.5 * s1 - a(47) + a(57) - a(59)
a( 6) =  0.5 * s1 - a(48)
a( 5) =  0.5 * s1 - a(47)
a( 4) = -0.5 * s1 + a(47) + a(59) + a(62)
a( 3) = -0.5 * s1 + a(48) + a(60) + a(61)
a( 2) = -0.5 * s1 + a(47) + a(59) + a(64)
a( 1) = -0.5 * s1 + a(48) + a(60) + a(63)

The linear equations shown above, are ready to be solved, for the Magic Constant 130.

The solutions can be obtained by guessing:

   a(47), a(48), a(55) ... a(64)

and filling out these guesses in the abovementioned equations.

For distinct integers also following relations are applicable:

0 < a(i) =< 64        for i = 1, 2 ... 46, 49 ... 54
a(i) ≠ a(j)           for i ≠ j

which can be incorporated in a guessing routine, which might be used to find other 4th order Pan Diagonal/Triagonal Magic Cubes.

However, the equations deducted above can be applied in a more efficient method to generate Pan Diagonal/Triagonal Magic Cubes, which will be discussed in Section 3.12.5.


Vorige Pagina Volgende Pagina Index About the Author