12.10 Magic Squares (15 x 15)
12.10.1 Composed Magic Squares, Overlapping Sub Squares
A classical Magic Square of order 15, with miscellaneous each other Overlapping Sub Squares is shown below:
Mc15 = 1695
156 |
154 |
85 |
69 |
149 |
65 |
123 |
49 |
167 |
50 |
125 |
164 |
165 |
52 |
122 |
72 |
70 |
141 |
157 |
77 |
161 |
103 |
177 |
59 |
176 |
101 |
62 |
61 |
104 |
174 |
71 |
155 |
38 |
36 |
186 |
192 |
142 |
18 |
86 |
206 |
201 |
19 |
119 |
183 |
43 |
152 |
74 |
181 |
197 |
33 |
41 |
84 |
208 |
140 |
20 |
25 |
107 |
207 |
175 |
51 |
67 |
159 |
40 |
34 |
188 |
190 |
1 |
219 |
4 |
120 |
221 |
213 |
13 |
100 |
126 |
160 |
66 |
193 |
185 |
45 |
29 |
225 |
7 |
222 |
5 |
106 |
22 |
204 |
64 |
162 |
170 |
56 |
202 |
24 |
218 |
8 |
112 |
117 |
110 |
215 |
11 |
205 |
21 |
124 |
102 |
73 |
153 |
26 |
200 |
10 |
216 |
111 |
113 |
115 |
223 |
3 |
210 |
16 |
168 |
58 |
96 |
130 |
30 |
196 |
17 |
209 |
116 |
109 |
114 |
2 |
224 |
15 |
211 |
47 |
179 |
145 |
81 |
194 |
32 |
108 |
14 |
214 |
9 |
220 |
44 |
46 |
178 |
184 |
88 |
138 |
131 |
95 |
23 |
203 |
212 |
118 |
12 |
217 |
6 |
171 |
191 |
37 |
53 |
137 |
89 |
63 |
163 |
195 |
105 |
39 |
28 |
146 |
199 |
79 |
48 |
42 |
182 |
180 |
97 |
129 |
54 |
172 |
121 |
31 |
187 |
198 |
80 |
27 |
147 |
189 |
173 |
55 |
35 |
132 |
94 |
158 |
99 |
82 |
75 |
98 |
166 |
87 |
169 |
83 |
150 |
92 |
90 |
78 |
133 |
135 |
127 |
68 |
144 |
151 |
128 |
60 |
139 |
57 |
143 |
76 |
134 |
136 |
148 |
91 |
93 |
The Magic Square shown above is composed out of:
-
One 3th order Magic Center Square C;
-
Two each other overlapping 5th order Eccentric Magic Squares A1 and A2;
-
Two each other overlapping 7th order Eccentric Magic Squares B1 and B2;
-
Two 4th order Pan Magic Squares PM1 and PM2;
-
Two 6th order Eccentric Magic Squares
F1 and F2 with embedded
PM1 and PM2;
-
Two 9th order Eccentric Magic Squares
D1 and D2 with embedded
B1 and B2;
The construction of order 15 Magic Squares with miscellaneous each other Overlapping Sub Squares has been described in detail
in Section 11.2.2.
Attachment 14.9.8.2 shows a few order 15 Composed Magic Squares with Overlapping Sub Squares, as defined above.
Alternatively order 15 Magic Squares, with two each other overlapping 8th order Sub Squares, can be constructed based on suitable selected Latin Sub Squares, as illustrated in Section 25.6.
Attachment 25.6.2 shows a few 15th order Associated Magic Squares with 8th order Overlapping Sub Squares (Composed).
Attachment 25.6.3 shows a few 15th order Associated Magic Squares with 8th order Overlapping Sub Squares (Composed, Magic Middle and Center Squares).
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
12.10.2 Composed Magic Squares, Square Inlays Order 7 and 8
Associated Magic Squares of order 15 with Square Inlays of order 7 and 8 can be obtained by means of transformation of order 15 Composed Magic Squares,
as illustrated in Section 7.8.1 for order 7 Magic Squares.
Mc15 = 1695
225 |
119 |
8 |
32 |
196 |
28 |
183 |
189 |
47 |
138 |
78 |
133 |
91 |
76 |
152 |
203 |
17 |
181 |
223 |
108 |
15 |
44 |
164 |
166 |
59 |
63 |
83 |
137 |
98 |
134 |
106 |
13 |
33 |
210 |
29 |
188 |
212 |
58 |
90 |
151 |
153 |
123 |
111 |
165 |
53 |
18 |
195 |
224 |
113 |
2 |
31 |
208 |
41 |
149 |
104 |
158 |
68 |
122 |
77 |
185 |
14 |
38 |
197 |
16 |
193 |
213 |
120 |
173 |
61 |
115 |
103 |
73 |
75 |
136 |
168 |
182 |
211 |
118 |
3 |
45 |
209 |
23 |
92 |
128 |
89 |
143 |
163 |
167 |
60 |
62 |
43 |
198 |
30 |
194 |
218 |
107 |
1 |
74 |
150 |
135 |
93 |
148 |
88 |
179 |
37 |
222 |
219 |
6 |
5 |
192 |
112 |
35 |
97 |
126 |
95 |
124 |
146 |
87 |
144 |
85 |
9 |
12 |
215 |
216 |
36 |
116 |
187 |
84 |
145 |
86 |
147 |
125 |
94 |
127 |
96 |
202 |
199 |
26 |
25 |
184 |
46 |
109 |
67 |
156 |
65 |
154 |
176 |
57 |
174 |
55 |
19 |
22 |
205 |
206 |
40 |
178 |
121 |
54 |
175 |
56 |
177 |
155 |
64 |
157 |
66 |
105 |
48 |
186 |
20 |
21 |
204 |
207 |
160 |
69 |
162 |
71 |
49 |
170 |
51 |
172 |
117 |
180 |
42 |
201 |
200 |
27 |
24 |
171 |
52 |
169 |
50 |
72 |
161 |
70 |
159 |
39 |
110 |
190 |
10 |
11 |
214 |
217 |
130 |
99 |
132 |
101 |
79 |
140 |
81 |
142 |
191 |
114 |
34 |
221 |
220 |
7 |
4 |
141 |
82 |
139 |
80 |
102 |
131 |
100 |
129 |
The Composed Semi Magic Square shown above is composed out of:
-
One 7th order Ultra Magic Corner Square (s7 = 7 * s1 / 15)
-
One 8th order Associated (Compact) Magic Corner Square (s8 = 8 * s1 / 15),
-
Two Associated Magic Rectangles order 7 x 8
each with two Embedded order 4 Semi Magic Squares (s4 = 4 * s1 / 15).
The Magic Corner Squares
can be constructed by means of suitable selected Latin Squares, based on resp. order 7 and 8 Magic Lines for the integers 0 ... 14 as shown
in Attachment 12.10.1a.
Based on the definition above,
a routine can be developed to complete subject Composed Magic Squares (ref. MgcSqr15c).
Attachment 12.10.1b shows miscellaneous order 15 Composed Semi Magic Square, which could be found with subject routine.
Attachment 12.10.2 shows the resulting order 15 Associated Magic Squares with order 7 and 8 Square Inlays.
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
12.10.3 Associated Magic Squares
Associated Center Square Order 7
Associated Magic Squares of order 15 with an Associated Center Square of order 7 can be obtained by means of transformation of order 15 Composed Magic Squares as illustrated in Section 9.7.5 for order 9 Magic Squares.
Mc15 = 1695
97 |
126 |
95 |
124 |
222 |
219 |
6 |
5 |
192 |
112 |
35 |
146 |
87 |
144 |
85 |
84 |
145 |
86 |
147 |
9 |
12 |
215 |
216 |
36 |
116 |
187 |
125 |
94 |
127 |
96 |
67 |
156 |
65 |
154 |
202 |
199 |
26 |
25 |
184 |
46 |
109 |
176 |
57 |
174 |
55 |
54 |
175 |
56 |
177 |
19 |
22 |
205 |
206 |
40 |
178 |
121 |
155 |
64 |
157 |
66 |
189 |
47 |
138 |
78 |
225 |
119 |
8 |
32 |
196 |
28 |
183 |
133 |
91 |
76 |
152 |
164 |
166 |
59 |
63 |
203 |
17 |
181 |
223 |
108 |
15 |
44 |
83 |
137 |
98 |
134 |
58 |
90 |
151 |
153 |
106 |
13 |
33 |
210 |
29 |
188 |
212 |
123 |
111 |
165 |
53 |
41 |
149 |
104 |
158 |
18 |
195 |
224 |
113 |
2 |
31 |
208 |
68 |
122 |
77 |
185 |
173 |
61 |
115 |
103 |
14 |
38 |
197 |
16 |
193 |
213 |
120 |
73 |
75 |
136 |
168 |
92 |
128 |
89 |
143 |
182 |
211 |
118 |
3 |
45 |
209 |
23 |
163 |
167 |
60 |
62 |
74 |
150 |
135 |
93 |
43 |
198 |
30 |
194 |
218 |
107 |
1 |
148 |
88 |
179 |
37 |
160 |
69 |
162 |
71 |
105 |
48 |
186 |
20 |
21 |
204 |
207 |
49 |
170 |
51 |
172 |
171 |
52 |
169 |
50 |
117 |
180 |
42 |
201 |
200 |
27 |
24 |
72 |
161 |
70 |
159 |
130 |
99 |
132 |
101 |
39 |
110 |
190 |
10 |
11 |
214 |
217 |
79 |
140 |
81 |
142 |
141 |
82 |
139 |
80 |
191 |
114 |
34 |
221 |
220 |
7 |
4 |
102 |
131 |
100 |
129 |
Attachment 12.10.4 shows the Associated Magic Squares with order 7 Associated Center Squares,
corresponding with the Composed Semi Magic Squares as shown in Attachment 12.10.1b.
12.10.4 Associated Magic Squares
Square Inlays Order 6 and 7 (overlapping)
The 15th order Associated Inlaid Magic Square shown below:
Mc15 = 1695
152 |
221 |
215 |
163 |
146 |
140 |
110 |
67 |
20 |
50 |
56 |
73 |
125 |
131 |
26 |
162 |
129 |
201 |
119 |
12 |
83 |
168 |
31 |
224 |
46 |
104 |
136 |
181 |
29 |
70 |
160 |
89 |
177 |
38 |
123 |
196 |
114 |
6 |
27 |
192 |
93 |
138 |
57 |
213 |
72 |
157 |
203 |
108 |
1 |
84 |
171 |
44 |
132 |
21 |
54 |
144 |
99 |
186 |
216 |
75 |
71 |
166 |
39 |
126 |
209 |
117 |
8 |
78 |
219 |
51 |
141 |
96 |
189 |
24 |
161 |
68 |
111 |
14 |
87 |
173 |
33 |
121 |
204 |
18 |
183 |
147 |
102 |
48 |
222 |
164 |
41 |
42 |
128 |
198 |
106 |
9 |
81 |
179 |
211 |
194 |
91 |
149 |
59 |
16 |
191 |
61 |
3 |
76 |
174 |
36 |
134 |
207 |
113 |
19 |
92 |
190 |
52 |
150 |
223 |
165 |
35 |
210 |
167 |
77 |
135 |
32 |
15 |
47 |
145 |
217 |
120 |
28 |
98 |
184 |
185 |
62 |
4 |
178 |
124 |
79 |
43 |
208 |
22 |
105 |
193 |
53 |
139 |
212 |
115 |
158 |
65 |
202 |
37 |
130 |
85 |
175 |
7 |
148 |
218 |
109 |
17 |
100 |
187 |
60 |
155 |
151 |
10 |
40 |
127 |
82 |
172 |
205 |
94 |
182 |
55 |
142 |
225 |
118 |
23 |
69 |
154 |
13 |
169 |
88 |
133 |
34 |
199 |
220 |
112 |
30 |
103 |
188 |
49 |
137 |
66 |
156 |
197 |
45 |
90 |
122 |
180 |
2 |
195 |
58 |
143 |
214 |
107 |
25 |
97 |
64 |
200 |
95 |
101 |
153 |
170 |
176 |
206 |
159 |
116 |
86 |
80 |
63 |
11 |
5 |
74 |
|
Mc's
|
contains following inlays:
-
Two each 7th order Simple Magic Squares - Magic Sums s(1) = 743 and s(4) = 839 - with the center element in common,
-
Two each 6th order Simple Magic Squares - Magic Sums s(2) = 720 and s(3) = 636 - with symmetrical diagonals.
The relation between the Magic Sums s(1), s(2), s(3) and s(4) is:
s(1) = 14 * s1 / 15 - s(4)
s(2) = 12 * s1 / 15 - s(3)
With s1 = 1695 the Magic Sum of the 15th order Inlaid Magic Square.
The Associated Border can be described by following linear equations:
a(217) = - s1 / 15 + a(219) - s(3) + s(4)
a(216) = - s1 / 15 + a(220) - s(3) + s(4)
a(215) = - s1 / 15 + a(221) - s(3) + s(4)
a(214) = - s1 / 15 + a(222) - s(3) + s(4)
a(213) = - s1 / 15 + a(223) - s(3) + s(4)
a(212) = - s1 / 15 + a(224) - s(3) + s(4)
a(211) = s1 - a(212) - a(213) - a(214) - a(215) - a(216) - a(217) - a(218) - a(219) +
- a(220) - a(221) - a(222) - a(223) - a(224) - a(225)
a(196) = s1 - a(210) - s(3) - s(4)
a(181) = s1 - a(195) - s(3) - s(4)
a(166) = s1 - a(180) - s(3) - s(4)
a(151) = s1 - a(165) - s(3) - s(4)
a(136) = s1 - a(150) - s(3) - s(4)
a(121) = s1 - a(135) - s(3) - s(4)
a(120) = s1 - a( 15) - a(30) - a(45) - a(60) - a(75) - a( 90) - a(105) - a(135) - a(150) +
- a(165) - a(180) - a(195) - a(210) - a(225)
a( 1) = 2 * s1 / 15 - a(225)
a( 2) = 2 * s1 / 15 - a(224)
a( 3) = 2 * s1 / 15 - a(223)
a( 4) = 2 * s1 / 15 - a(222)
a( 5) = 2 * s1 / 15 - a(221)
a( 6) = 2 * s1 / 15 - a(220)
a( 7) = 2 * s1 / 15 - a(219)
a( 8) = 2 * s1 / 15 - a(218)
a( 9) = 2 * s1 / 15 - a(217)
a(10) = 2 * s1 / 15 - a(216)
|
a(11) = 2 * s1 / 15 - a(215)
a(12) = 2 * s1 / 15 - a(214)
a(13) = 2 * s1 / 15 - a(213)
a(14) = 2 * s1 / 15 - a(212)
a(15) = 2 * s1 / 15 - a(211)
a(16) = 2 * s1 / 15 - a(210)
a(30) = 2 * s1 / 15 - a(196)
a(31) = 2 * s1 / 15 - a(195)
a(45) = 2 * s1 / 15 - a(181)
|
a( 46) = 2 * s1 / 15 - a(180)
a( 60) = 2 * s1 / 15 - a(166)
a( 61) = 2 * s1 / 15 - a(165)
a( 75) = 2 * s1 / 15 - a(151)
a( 76) = 2 * s1 / 15 - a(150)
a( 90) = 2 * s1 / 15 - a(136)
a( 91) = 2 * s1 / 15 - a(135)
a(105) = 2 * s1 / 15 - a(121)
a(106) = 2 * s1 / 15 - a(120)
|
Which can be incorporated in an optimised guessing routine MgcSqr15k1.
The Magic Center Squares can be constructed by means of suitable selected (Semi-) Latin Squares, based on resp. order 6 and 7 Magic Lines for the integers 0 ... 14 as shown in Attachment 12.10.5a.
Attachment 12.10.5b shows a few 15th order Inlaid Magic Squares
for miscellaneous possible Magic Sums s(3) and s(4).
Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the border.
12.10.5 Composed Magic Squares, Associated
Diamond Inlays Order 5
The 15th order Composed Inlaid Magic Square shown below,
contains nine each order 5 Sub Squares with Diamond Inlay.
The nine Sub Squares contain each 25 consecutive integers, with corresponding Magic Sum (shown right).
Mc15 = 1695
150 |
143 |
135 |
132 |
130 |
128 |
140 |
131 |
142 |
149 |
139 |
129 |
138 |
147 |
137 |
127 |
134 |
145 |
136 |
148 |
146 |
144 |
141 |
133 |
126 |
|
25 |
18 |
10 |
7 |
5 |
3 |
15 |
6 |
17 |
24 |
14 |
4 |
13 |
22 |
12 |
2 |
9 |
20 |
11 |
23 |
21 |
19 |
16 |
8 |
1 |
|
200 |
193 |
185 |
182 |
180 |
178 |
190 |
181 |
192 |
199 |
189 |
179 |
188 |
197 |
187 |
177 |
184 |
195 |
186 |
198 |
196 |
194 |
191 |
183 |
176 |
|
175 |
168 |
160 |
157 |
155 |
153 |
165 |
156 |
167 |
174 |
164 |
154 |
163 |
172 |
162 |
152 |
159 |
170 |
161 |
173 |
171 |
169 |
166 |
158 |
151 |
|
125 |
118 |
110 |
107 |
105 |
103 |
115 |
106 |
117 |
124 |
114 |
104 |
113 |
122 |
112 |
102 |
109 |
120 |
111 |
123 |
121 |
119 |
116 |
108 |
101 |
|
75 |
68 |
60 |
57 |
55 |
53 |
65 |
56 |
67 |
74 |
64 |
54 |
63 |
72 |
62 |
52 |
59 |
70 |
61 |
73 |
71 |
69 |
66 |
58 |
51 |
|
50 |
43 |
35 |
32 |
30 |
28 |
40 |
31 |
42 |
49 |
39 |
29 |
38 |
47 |
37 |
27 |
34 |
45 |
36 |
48 |
46 |
44 |
41 |
33 |
26 |
|
225 |
218 |
210 |
207 |
205 |
203 |
215 |
206 |
217 |
224 |
214 |
204 |
213 |
222 |
212 |
202 |
209 |
220 |
211 |
223 |
221 |
219 |
216 |
208 |
201 |
|
100 |
93 |
85 |
82 |
80 |
78 |
90 |
81 |
92 |
99 |
89 |
79 |
88 |
97 |
87 |
77 |
84 |
95 |
86 |
98 |
96 |
94 |
91 |
83 |
76 |
|
|
MC5
690 |
65 |
940 |
815 |
565 |
315 |
190 |
1065 |
440 |
|
Methods to construct Magic Squares composed of Magic Sub Squares have been discussed in detail
in Section 9.9.1.
Att 18.4.01 Sht. 2, provides some additional examples of order 15 Magic Squares,
composed of nine order 5 Sub Squares for miscellaneous types.
12.10.6 Concentric Magic Squares, Diamond Inlay Order 8
The 15th order Concentric Inlaid Magic Square shown below,
contains one each 8th order Diamond Inlay (s8 = 904).
Mc15 = 1695
54 |
120 |
146 |
148 |
152 |
154 |
156 |
225 |
158 |
64 |
62 |
60 |
58 |
56 |
82 |
128 |
20 |
76 |
190 |
192 |
194 |
9 |
103 |
219 |
198 |
26 |
24 |
22 |
196 |
98 |
130 |
88 |
218 |
112 |
12 |
201 |
117 |
15 |
107 |
5 |
224 |
222 |
10 |
138 |
96 |
132 |
174 |
14 |
44 |
17 |
97 |
195 |
95 |
213 |
133 |
3 |
220 |
212 |
52 |
94 |
134 |
176 |
16 |
173 |
171 |
23 |
121 |
29 |
169 |
215 |
63 |
53 |
210 |
50 |
92 |
136 |
178 |
61 |
101 |
81 |
127 |
205 |
137 |
27 |
69 |
145 |
125 |
165 |
48 |
90 |
140 |
183 |
115 |
153 |
91 |
51 |
49 |
207 |
83 |
175 |
135 |
73 |
111 |
43 |
86 |
35 |
141 |
181 |
139 |
167 |
159 |
147 |
113 |
79 |
67 |
59 |
87 |
45 |
85 |
191 |
126 |
37 |
151 |
47 |
77 |
71 |
143 |
19 |
177 |
155 |
149 |
179 |
75 |
189 |
100 |
122 |
180 |
187 |
161 |
41 |
157 |
21 |
89 |
199 |
99 |
185 |
65 |
39 |
46 |
104 |
118 |
184 |
18 |
193 |
163 |
203 |
105 |
197 |
57 |
11 |
55 |
33 |
208 |
42 |
108 |
110 |
40 |
66 |
6 |
209 |
129 |
31 |
131 |
13 |
93 |
223 |
182 |
160 |
186 |
116 |
102 |
38 |
216 |
114 |
214 |
25 |
109 |
211 |
119 |
221 |
2 |
4 |
8 |
188 |
124 |
84 |
30 |
150 |
36 |
34 |
32 |
217 |
123 |
7 |
28 |
200 |
202 |
204 |
206 |
142 |
144 |
106 |
80 |
78 |
74 |
72 |
70 |
1 |
68 |
162 |
164 |
166 |
168 |
170 |
172 |
As the order 8 Diamond Inlay contain only odd numbers, the Concentric Inlaid Magic Square is a Lozenge Square.
The method to generate order 15 Concentric Lozenge Squares with order 8 Diamond Inlays has been discussed in detail
in Section 18.8.3.
Attachment Lozenge 15.2 shows a few more
order 15 Concentric Lozenge Squares with order 8 Diamond Inlays.
12.10.8 Summary
The obtained results regarding the miscellaneous types of order 15 Magic Squares as deducted and discussed in previous sections are summarised in following table:
|