Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

12.10   Magic Squares (15 x 15)

12.10.1 Composed Magic Squares, Overlapping Sub Squares

A classical Magic Square of order 15, with miscellaneous each other Overlapping Sub Squares is shown below:

Mc15 = 1695
156 154 85 69 149 65 123 49 167 50 125 164 165 52 122
72 70 141 157 77 161 103 177 59 176 101 62 61 104 174
71 155 38 36 186 192 142 18 86 206 201 19 119 183 43
152 74 181 197 33 41 84 208 140 20 25 107 207 175 51
67 159 40 34 188 190 1 219 4 120 221 213 13 100 126
160 66 193 185 45 29 225 7 222 5 106 22 204 64 162
170 56 202 24 218 8 112 117 110 215 11 205 21 124 102
73 153 26 200 10 216 111 113 115 223 3 210 16 168 58
96 130 30 196 17 209 116 109 114 2 224 15 211 47 179
145 81 194 32 108 14 214 9 220 44 46 178 184 88 138
131 95 23 203 212 118 12 217 6 171 191 37 53 137 89
63 163 195 105 39 28 146 199 79 48 42 182 180 97 129
54 172 121 31 187 198 80 27 147 189 173 55 35 132 94
158 99 82 75 98 166 87 169 83 150 92 90 78 133 135
127 68 144 151 128 60 139 57 143 76 134 136 148 91 93

The Magic Square shown above is composed out of:

  • One 3th order Magic Center Square C;
  • Two each other overlapping 5th order Eccentric Magic Squares A1 and A2;
  • Two each other overlapping 7th order Eccentric Magic Squares B1 and B2;
  • Two 4th order Pan Magic Squares PM1 and PM2;
  • Two 6th order Eccentric Magic Squares F1 and F2 with embedded PM1 and PM2;
  • Two 9th order Eccentric Magic Squares D1 and D2 with embedded B1 and B2;

The construction of order 15 Magic Squares with miscellaneous each other Overlapping Sub Squares has been described in detail in Section 11.2.2.

Attachment 14.9.8.2 shows a few order 15 Composed Magic Squares with Overlapping Sub Squares, as defined above.

Alternatively order 15 Magic Squares, with two each other overlapping 8th order Sub Squares, can be constructed based on suitable selected Latin Sub Squares, as illustrated in Section 25.6.

Attachment 25.6.2 shows a few 15th order Associated Magic Squares with 8th order Overlapping Sub Squares (Composed).

Attachment 25.6.3 shows a few 15th order Associated Magic Squares with 8th order Overlapping Sub Squares (Composed, Magic Middle and Center Squares).

Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.

12.10.2 Composed Magic Squares, Square Inlays Order 7 and 8

Associated Magic Squares of order 15 with Square Inlays of order 7 and 8 can be obtained by means of transformation of order 15 Composed Magic Squares, as illustrated in Section 7.8.1 for order 7 Magic Squares.

Mc15 = 1695
225 119 8 32 196 28 183 189 47 138 78 133 91 76 152
203 17 181 223 108 15 44 164 166 59 63 83 137 98 134
106 13 33 210 29 188 212 58 90 151 153 123 111 165 53
18 195 224 113 2 31 208 41 149 104 158 68 122 77 185
14 38 197 16 193 213 120 173 61 115 103 73 75 136 168
182 211 118 3 45 209 23 92 128 89 143 163 167 60 62
43 198 30 194 218 107 1 74 150 135 93 148 88 179 37
222 219 6 5 192 112 35 97 126 95 124 146 87 144 85
9 12 215 216 36 116 187 84 145 86 147 125 94 127 96
202 199 26 25 184 46 109 67 156 65 154 176 57 174 55
19 22 205 206 40 178 121 54 175 56 177 155 64 157 66
105 48 186 20 21 204 207 160 69 162 71 49 170 51 172
117 180 42 201 200 27 24 171 52 169 50 72 161 70 159
39 110 190 10 11 214 217 130 99 132 101 79 140 81 142
191 114 34 221 220 7 4 141 82 139 80 102 131 100 129

The Composed Semi Magic Square shown above is composed out of:

  • One 7th order Ultra Magic Corner Square (s7 = 7 * s1 / 15)
  • One 8th order Associated (Compact) Magic Corner Square (s8 = 8 * s1 / 15),
  • Two Associated Magic Rectangles order 7 x 8
    each with two Embedded order 4 Semi Magic Squares (s4 = 4 * s1 / 15).

The Magic Corner Squares can be constructed by means of suitable selected Latin Squares, based on resp. order 7 and 8 Magic Lines for the integers 0 ... 14 as shown in Attachment 12.10.1a.

Based on the definition above, a routine can be developed to complete subject Composed Magic Squares (ref. MgcSqr15c).

Attachment 12.10.1b shows miscellaneous order 15 Composed Semi Magic Square, which could be found with subject routine.

Attachment 12.10.2 shows the resulting order 15 Associated Magic Squares with order 7 and 8 Square Inlays.

Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.

12.10.3 Associated Magic Squares

Associated Center Square Order 7

Associated Magic Squares of order 15 with an Associated Center Square of order 7 can be obtained by means of transformation of order 15 Composed Magic Squares as illustrated in Section 9.7.5 for order 9 Magic Squares.

Mc15 = 1695
97 126 95 124 222 219 6 5 192 112 35 146 87 144 85
84 145 86 147 9 12 215 216 36 116 187 125 94 127 96
67 156 65 154 202 199 26 25 184 46 109 176 57 174 55
54 175 56 177 19 22 205 206 40 178 121 155 64 157 66
189 47 138 78 225 119 8 32 196 28 183 133 91 76 152
164 166 59 63 203 17 181 223 108 15 44 83 137 98 134
58 90 151 153 106 13 33 210 29 188 212 123 111 165 53
41 149 104 158 18 195 224 113 2 31 208 68 122 77 185
173 61 115 103 14 38 197 16 193 213 120 73 75 136 168
92 128 89 143 182 211 118 3 45 209 23 163 167 60 62
74 150 135 93 43 198 30 194 218 107 1 148 88 179 37
160 69 162 71 105 48 186 20 21 204 207 49 170 51 172
171 52 169 50 117 180 42 201 200 27 24 72 161 70 159
130 99 132 101 39 110 190 10 11 214 217 79 140 81 142
141 82 139 80 191 114 34 221 220 7 4 102 131 100 129

Attachment 12.10.4 shows the Associated Magic Squares with order 7 Associated Center Squares, corresponding with the Composed Semi Magic Squares as shown in Attachment 12.10.1b.

12.10.4 Associated Magic Squares

Square Inlays Order 6 and 7 (overlapping)

The 15th order Associated Inlaid Magic Square shown below:

Mc15 = 1695
152 221 215 163 146 140 110 67 20 50 56 73 125 131 26
162 129 201 119 12 83 168 31 224 46 104 136 181 29 70
160 89 177 38 123 196 114 6 27 192 93 138 57 213 72
157 203 108 1 84 171 44 132 21 54 144 99 186 216 75
71 166 39 126 209 117 8 78 219 51 141 96 189 24 161
68 111 14 87 173 33 121 204 18 183 147 102 48 222 164
41 42 128 198 106 9 81 179 211 194 91 149 59 16 191
61 3 76 174 36 134 207 113 19 92 190 52 150 223 165
35 210 167 77 135 32 15 47 145 217 120 28 98 184 185
62 4 178 124 79 43 208 22 105 193 53 139 212 115 158
65 202 37 130 85 175 7 148 218 109 17 100 187 60 155
151 10 40 127 82 172 205 94 182 55 142 225 118 23 69
154 13 169 88 133 34 199 220 112 30 103 188 49 137 66
156 197 45 90 122 180 2 195 58 143 214 107 25 97 64
200 95 101 153 170 176 206 159 116 86 80 63 11 5 74
Mc's
743 720
636 839

contains following inlays:

  • Two each 7th order Simple Magic Squares - Magic Sums s(1) = 743 and s(4) = 839 - with the center element in common,
  • Two each 6th order Simple Magic Squares - Magic Sums s(2) = 720 and s(3) = 636 - with symmetrical diagonals.

The relation between the Magic Sums s(1), s(2), s(3) and s(4) is:

 s(1) = 14 * s1 / 15 - s(4)
 s(2) = 12 * s1 / 15 - s(3)

With s1 = 1695 the Magic Sum of the 15th order Inlaid Magic Square.

The Associated Border can be described by following linear equations:

a(217) =    - s1 / 15 + a(219) - s(3) + s(4)
a(216) =    - s1 / 15 + a(220) - s(3) + s(4)
a(215) =    - s1 / 15 + a(221) - s(3) + s(4)
a(214) =    - s1 / 15 + a(222) - s(3) + s(4)
a(213) =    - s1 / 15 + a(223) - s(3) + s(4) 
a(212) =    - s1 / 15 + a(224) - s(3) + s(4)
a(211) =      s1      - a(212) - a(213) - a(214) - a(215) - a(216) - a(217) - a(218) - a(219) +
                                                          - a(220) - a(221) - a(222) - a(223) - a(224) - a(225)
a(196) =      s1      - a(210) - s(3) - s(4)
a(181) =      s1      - a(195) - s(3) - s(4)
a(166) =      s1      - a(180) - s(3) - s(4)
a(151) =      s1      - a(165) - s(3) - s(4)
a(136) =      s1      - a(150) - s(3) - s(4)
a(121) =      s1      - a(135) - s(3) - s(4)
a(120) =      s1      - a( 15) - a(30) - a(45) - a(60) - a(75) - a( 90) - a(105) - a(135) - a(150) +
                                                               - a(165) - a(180) - a(195) - a(210) - a(225)

a( 1) = 2 * s1 / 15 - a(225)
a( 2) = 2 * s1 / 15 - a(224)
a( 3) = 2 * s1 / 15 - a(223)
a( 4) = 2 * s1 / 15 - a(222)
a( 5) = 2 * s1 / 15 - a(221)
a( 6) = 2 * s1 / 15 - a(220)
a( 7) = 2 * s1 / 15 - a(219)
a( 8) = 2 * s1 / 15 - a(218)
a( 9) = 2 * s1 / 15 - a(217)
a(10) = 2 * s1 / 15 - a(216)

a(11) = 2 * s1 / 15 - a(215)
a(12) = 2 * s1 / 15 - a(214)
a(13) = 2 * s1 / 15 - a(213)
a(14) = 2 * s1 / 15 - a(212)
a(15) = 2 * s1 / 15 - a(211)
a(16) = 2 * s1 / 15 - a(210)
a(30) = 2 * s1 / 15 - a(196)
a(31) = 2 * s1 / 15 - a(195)
a(45) = 2 * s1 / 15 - a(181)

a( 46) = 2 * s1 / 15 - a(180)
a( 60) = 2 * s1 / 15 - a(166)
a( 61) = 2 * s1 / 15 - a(165)
a( 75) = 2 * s1 / 15 - a(151)
a( 76) = 2 * s1 / 15 - a(150)
a( 90) = 2 * s1 / 15 - a(136)
a( 91) = 2 * s1 / 15 - a(135)
a(105) = 2 * s1 / 15 - a(121)
a(106) = 2 * s1 / 15 - a(120)

Which can be incorporated in an optimised guessing routine MgcSqr15k1.

The Magic Center Squares can be constructed by means of suitable selected (Semi-) Latin Squares, based on resp. order 6 and 7 Magic Lines for the integers 0 ... 14 as shown in Attachment 12.10.5a.

Attachment 12.10.5b shows a few 15th order Inlaid Magic Squares for miscellaneous possible Magic Sums s(3) and s(4).

Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the border.

12.10.5 Composed Magic Squares, Associated

Diamond Inlays Order 5

The 15th order Composed Inlaid Magic Square shown below, contains nine each order 5 Sub Squares with Diamond Inlay.

The nine Sub Squares contain each 25 consecutive integers, with corresponding Magic Sum (shown right).

Mc15 = 1695
150 143 135 132 130
128 140 131 142 149
139 129 138 147 137
127 134 145 136 148
146 144 141 133 126
25 18 10 7 5
3 15 6 17 24
14 4 13 22 12
2 9 20 11 23
21 19 16 8 1
200 193 185 182 180
178 190 181 192 199
189 179 188 197 187
177 184 195 186 198
196 194 191 183 176
175 168 160 157 155
153 165 156 167 174
164 154 163 172 162
152 159 170 161 173
171 169 166 158 151
125 118 110 107 105
103 115 106 117 124
114 104 113 122 112
102 109 120 111 123
121 119 116 108 101
75 68 60 57 55
53 65 56 67 74
64 54 63 72 62
52 59 70 61 73
71 69 66 58 51
50 43 35 32 30
28 40 31 42 49
39 29 38 47 37
27 34 45 36 48
46 44 41 33 26
225 218 210 207 205
203 215 206 217 224
214 204 213 222 212
202 209 220 211 223
221 219 216 208 201
100 93 85 82 80
78 90 81 92 99
89 79 88 97 87
77 84 95 86 98
96 94 91 83 76
MC5
690 65 940
815 565 315
190 1065 440

Methods to construct Magic Squares composed of Magic Sub Squares have been discussed in detail in Section 9.9.1.

Att 18.4.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of nine order 5 Sub Squares for miscellaneous types.

12.10.6 Concentric Magic Squares, Diamond Inlay Order 8

The 15th order Concentric Inlaid Magic Square shown below, contains one each 8th order Diamond Inlay (s8 = 904).

Mc15 = 1695
54 120 146 148 152 154 156 225 158 64 62 60 58 56 82
128 20 76 190 192 194 9 103 219 198 26 24 22 196 98
130 88 218 112 12 201 117 15 107 5 224 222 10 138 96
132 174 14 44 17 97 195 95 213 133 3 220 212 52 94
134 176 16 173 171 23 121 29 169 215 63 53 210 50 92
136 178 61 101 81 127 205 137 27 69 145 125 165 48 90
140 183 115 153 91 51 49 207 83 175 135 73 111 43 86
35 141 181 139 167 159 147 113 79 67 59 87 45 85 191
126 37 151 47 77 71 143 19 177 155 149 179 75 189 100
122 180 187 161 41 157 21 89 199 99 185 65 39 46 104
118 184 18 193 163 203 105 197 57 11 55 33 208 42 108
110 40 66 6 209 129 31 131 13 93 223 182 160 186 116
102 38 216 114 214 25 109 211 119 221 2 4 8 188 124
84 30 150 36 34 32 217 123 7 28 200 202 204 206 142
144 106 80 78 74 72 70 1 68 162 164 166 168 170 172

As the order 8 Diamond Inlay contain only odd numbers, the Concentric Inlaid Magic Square is a Lozenge Square.

The method to generate order 15 Concentric Lozenge Squares with order 8 Diamond Inlays has been discussed in detail in Section 18.8.3.

Attachment Lozenge 15.2 shows a few more order 15 Concentric Lozenge Squares with order 8 Diamond Inlays.

12.10.8 Summary

The obtained results regarding the miscellaneous types of order 15 Magic Squares as deducted and discussed in previous sections are summarised in following table:

Type

Characteristics

Subroutine

Results

Composed

Sub Squares Order 7 and 8

MgcSqr15c

Attachment 12.10.1b

Associated

Square Inlays Order 7 and 8

-

Attachment 12.10.2

Associated

Center Square Order 7

-

Attachment 12.10.4

Composed

Square Inlays Order 6 and 7

MgcSqr15k1

Attachment 12.10.5b

-

-

-

-

Comparable routines as listed above, can be used to generate alternative types of order 17 Magic Squares.


Vorige Pagina Volgende Pagina Index About the Author