Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

20.3   Construction Methods, Inlaid Magic Squares

20.3.1 Simple Magic Squares (14 x 14)
       Generator Method


Simple Magic Squares of order 14 can be constructed very efficiently with the Generator Principle, as applied for the construction of Bimagic Squares (ref. Section 15).

The Generator Method, as applied for Simple Magic Squares of order 14 can be summarised as follows:

  • Generate Magic Series for the consecutive integers {1 ... 196} and the related Magic Sum (1379);
  • Construct Generators with 14 Magic Rows, based on the Magic Series obtained above;
  • Construct Semi Magic Squares, by permutating the numbers within the rows of the Generators;
  • Permutate the rows and columns within the Semi Magic Squares, in order to obtain Magic Squares.

Suitable Generators for order 14 Magic Squares can be constructed semi-automatically (ref. CnstrGen14).

An example of a Simple Magic Square, constructed with the generator method described above, is shown below:

Mc14 = 1379
196 195 194 193 6 7 5 191 190 192 1 4 3 2
182 181 180 179 20 21 19 177 176 178 15 18 17 16
30 31 32 29 165 35 33 163 162 164 34 166 167 168
43 44 45 46 149 150 151 47 48 49 148 152 153 154
50 51 52 53 142 143 144 54 55 56 141 145 146 147
57 58 60 59 135 136 137 61 62 63 134 138 139 140
96 93 105 95 97 103 92 102 98 100 104 101 99 94
78 79 80 81 114 83 116 82 115 84 113 117 118 119
64 65 67 66 128 129 130 68 69 70 127 131 132 133
112 111 90 107 106 108 89 109 85 91 110 88 86 87
71 72 76 74 121 122 123 75 73 77 120 124 125 126
36 37 38 39 156 157 158 40 41 42 155 159 160 161
175 174 173 172 27 171 170 26 22 28 169 25 24 23
189 188 187 186 13 14 12 184 183 185 8 11 10 9

The Generator Method, as applied for the Simple Magic Square shown above, is illustrated in Attachment 20.3.11.

The applied Semi Magic Square results in numerous Essential Different Magic Squares. A few sets of potential diagonals are shown in Attachment 20.3.12.

Each Essential Different Simple Magic Square corresponds with 322560 transformations, as described below.

  • Any line n can be interchanged with line (15 - n). The possible number of transformations is 27 = 128.
    It should be noted that for each square the 180o rotated aspect is included in this collection.

  • Any permutation can be applied to the lines 1, 2, ... 7, provided that the same permutation is applied to the lines 14, 13, ... 8. The possible number of transformations is 7! = 5040.

The resulting number of transformations, excluding the 180o rotated aspects, is 128/2 * 5040 = 322560.

20.3.2 Simple Magic Squares (14 x 14)
       Order 5 Magic Square Inlay


Order 14 Simple Magic Squares with order 5 Square Inlay(s) can be constructed with the generator method.

An example is shown below:

Mc14 = 1379, Mc5 = 685
187 85 195 83 135 18 181 182 15 124 19 122 16 17
142 80 192 78 193 13 12 184 3 134 20 131 183 14
136 133 137 141 138 9 10 186 185 143 11 140 2 8
81 196 82 194 132 24 21 180 179 109 110 26 22 23
139 191 79 189 87 4 1 6 188 147 7 146 5 190
29 27 178 28 25 176 175 30 33 177 174 31 173 123
111 34 35 172 32 170 37 36 169 39 168 38 167 171
45 41 44 42 40 164 163 43 97 46 162 165 161 166
155 48 49 84 47 158 160 157 51 50 159 52 156 53
56 55 57 71 54 152 151 59 149 58 150 153 60 154
62 145 63 61 148 144 130 64 65 66 67 107 128 129
69 126 70 68 127 125 121 72 73 98 120 74 117 119
76 116 108 75 115 118 114 86 77 92 113 89 88 112
91 102 90 93 106 104 103 94 95 96 99 105 101 100

The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.2.

The applied Square Inlay is an order 5 Associated Magic Square with order 3 Diamond Inlay.

Potential Order 5 Magic Squares with Diamond Inlays might be constructed for the integers {1 ... 196} with routine MgcSqr2032.

Alternatively Order 5 Simple Magic, Associated, Pan Magic or Ultra Magic Squares can be used as Square Inlay(s).

20.3.3 Simple Magic Squares (14 x 14)
       Order 6 Magic Square Inlay


Order 14 Simple Magic Squares with order 6 Square Inlay(s) can be constructed with the generator method.

An example is shown below:

Mc14 = 1379, Mc6 = 684
36 119 181 48 107 193 21 169 167 3 22 120 168 25
183 118 38 189 112 44 18 172 19 20 170 101 171 24
51 104 196 33 122 178 175 15 16 23 173 174 17 102
180 121 35 192 109 47 182 11 176 14 12 179 13 108
39 116 184 45 110 190 187 7 185 186 8 10 9 103
195 106 50 177 124 32 194 4 188 6 2 191 5 105
29 28 164 27 67 162 26 163 30 165 161 31 166 160
159 157 40 37 52 34 41 156 42 158 151 43 155 154
147 53 149 55 68 46 54 150 49 152 153 56 148 99
57 144 59 58 62 146 60 143 61 145 141 63 142 98
64 66 69 140 72 65 139 137 135 136 70 138 77 71
73 75 1 134 133 74 85 78 131 132 129 76 130 128
79 83 123 127 126 80 84 81 86 125 92 100 82 111
87 89 90 117 115 88 113 93 94 114 95 97 96 91

The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.3.

The applied Square Inlay is an order 6 Most Perfect Magic Square.

Potential Order 6 Most Perfect Magic Squares might be constructed for the integers {1 ... 196} with routine MgcSqr2033.

Alternatively other types of Order 6 Magic Squares (ref. Sections 6) can be used as Square Inlay(s).

20.3.4 Simple Magic Squares (14 x 14)
       Order 7 Magic Square Inlay


Order 14 Simple Magic Squares with order 7 Square Inlay(s) can be constructed with the generator method.

An example is shown below:

Mc14 = 1379, Mc7 = 798
109 123 135 97 103 110 121 24 29 190 26 143 27 142
106 115 94 126 132 108 117 21 25 191 22 150 23 149
98 127 112 133 92 137 99 18 19 192 158 20 17 157
138 104 100 114 128 124 90 170 4 16 169 14 193 15
129 91 136 95 116 101 130 175 10 13 12 174 194 3
111 120 96 102 134 113 122 179 178 11 9 7 195 2
107 118 125 131 93 105 119 183 182 8 6 1 196 5
30 187 37 188 34 31 28 33 185 186 189 35 32 184
176 38 40 39 42 168 36 41 47 180 181 171 43 177
45 49 50 46 172 48 44 167 159 51 173 166 53 156
54 88 163 77 56 58 165 57 89 55 139 52 162 164
60 67 62 87 59 64 161 160 155 140 63 154 86 61
141 69 151 68 71 66 65 70 152 72 153 148 73 80
75 83 78 76 147 146 82 81 145 74 79 144 85 84

The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.4.

The applied Square Inlay is an order 7 Associated Magic Square with order 3 and 4 Diamond Inlays.

Potential Order 7 Associated Magic Squares - with order 3 and 4 Diamond Inlays - might be constructed for the integers {1 ... 196} with routine MgcSqr2034.

Alternatively other types of Order 7 Magic Squares (ref. Sections 7) can be used as Square Inlay(s).

20.3.5 Simple Magic Squares (14 x 14)
       Order 9 Magic Square Inlay


Order 14 Simple Magic Squares with order 9 Square Inlay(s) can be constructed with the generator method.

An example is shown below:

Mc14 = 1379, Mc9 = 1026
115 131 141 137 74 81 117 107 123 160 157 14 5 17
75 139 127 118 84 150 151 99 83 158 9 3 16 167
85 79 152 126 94 142 136 119 93 11 163 164 13 2
125 80 108 96 104 112 140 128 133 165 4 166 10 8
146 138 130 122 114 106 98 90 82 169 1 7 6 170
95 100 88 116 124 132 120 148 103 37 36 72 168 40
135 109 92 86 134 102 76 149 143 15 156 71 41 70
145 129 77 78 144 110 101 89 153 18 68 43 69 155
105 121 111 147 154 91 87 97 113 39 19 67 162 66
21 25 22 23 194 24 57 20 195 26 191 193 192 196
190 33 30 186 27 31 32 28 29 189 44 185 187 188
35 183 64 42 34 184 161 182 12 38 181 45 159 59
47 61 65 53 46 56 48 50 63 180 177 178 176 179
60 51 172 49 52 58 55 73 54 174 173 171 175 62

The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.5.

The applied Square Inlay is an order 9 Associated Magic Square with order 4 and 5 Diamond Inlays.

Potential Order 9 Associated Magic Squares - with order 4 and 5 Diamond Inlays - might be constructed as described in Secion 18.4.3.

Also for following example:

Mc14 = 1379, Mc9 = 1026
122 77 140 127 82 145 120 75 138 11 163 164 13 2
131 113 95 136 118 100 129 111 93 160 157 14 5 17
86 149 104 91 154 109 84 147 102 158 9 3 16 167
121 76 139 123 78 141 125 80 143 165 4 166 10 8
130 112 94 132 114 96 134 116 98 169 1 7 6 170
85 148 103 87 150 105 89 152 107 37 36 72 168 40
126 81 144 119 74 137 124 79 142 15 156 71 41 70
135 117 99 128 110 92 133 115 97 18 68 43 69 155
90 153 108 83 146 101 88 151 106 39 19 67 162 66
22 195 57 23 194 24 21 25 20 26 191 193 192 196
30 29 32 186 27 31 190 33 28 189 44 185 187 188
64 12 161 42 34 184 35 183 182 38 181 45 159 59
65 63 48 53 46 56 47 61 50 180 177 178 176 179
172 54 55 49 52 58 60 51 73 174 173 171 175 62
s3
339 354 333
336 342 348
351 330 345

the Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.5.

The applied Square Inlay is an order 9 Composed Magic Square with order 3 Square Inlays.

The resulting square shown above corresponds with 86 * 23 * (5!) * (4!)2 = 1,45 1011 solutions, which can be obtained by selecting other aspects of the nine inlays and variation of the (eccentric) border.

Potential Order 9 Composed Magic Squares - with order 3 Square Inlays - might be constructed as described in Secion 9.9.2.

Alternatively other types of Order 9 Magic Squares (ref. Sections 9) can be used as Square Inlay(s).

20.3.6 Simple Magic Squares (14 x 14)
       Order 10 Magic Square Inlay


Order 14 Simple Magic Squares with order 10 Square Inlay(s) can be constructed with a variation on the generator method.

An example is shown below:

Mc14 = 1379, Mc10 = 990
92 103 165 164 152 46 47 48 61 137 73 83 114 94
98 93 81 109 116 151 85 87 88 72 101 91 95 112
2 196 27 172 18 175 25 181 19 174 16 183 1 190
4 187 158 39 167 36 160 30 166 37 169 28 3 195
6 184 144 55 135 58 142 64 136 57 133 66 5 194
185 7 119 78 128 75 121 69 127 76 130 67 189 8
9 193 53 146 44 149 51 155 45 148 42 157 10 177
188 11 41 156 50 153 43 147 49 154 52 145 178 12
186 13 131 68 122 71 129 77 123 70 120 79 176 14
192 59 132 65 141 62 134 56 140 63 143 54 118 20
191 60 170 29 161 32 168 38 162 31 159 40 117 21
22 80 15 182 24 179 17 173 23 180 26 171 163 124
100 96 110 82 86 84 107 115 102 106 89 90 99 113
104 97 33 34 35 108 150 139 138 74 126 125 111 105

the Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail in Attachment 20.3.6.

The applied Square Inlay is an order 10 Associated, Compact Pan Magic Square (Non Consecutive Integers) as described in Secion 10.5.2.

The resulting square shown above corresponds with 100 * 1152 * 4 * (10!)2 = 6,068 1018 solutions, which can be obtained by selecting other aspects of the order 10 inlay and variation of the border.

Alternatively other types of Order 10 Magic Squares (ref. Sections 10) can be used as Square Inlay(s).


Vorige Pagina Volgende Pagina Index About the Author