20.3 Construction Methods, Inlaid Magic Squares
20.3.1 Simple Magic Squares (14 x 14)
Generator Method
Simple Magic Squares of order 14 can be constructed very efficiently with the Generator Principle, as applied for the construction of Bimagic Squares
(ref. Section 15).
The Generator Method, as applied for Simple Magic Squares of order 14 can be summarised as follows:
-
Generate Magic Series for the consecutive integers {1 ... 196} and the related Magic Sum (1379);
-
Construct Generators with 14 Magic Rows, based on the Magic Series obtained above;
-
Construct Semi Magic Squares, by permutating the numbers within the rows of the Generators;
-
Permutate the rows and columns within the Semi Magic Squares, in order to obtain Magic Squares.
Suitable Generators for order 14 Magic Squares can be constructed semi-automatically
(ref. CnstrGen14).
An example of a Simple Magic Square, constructed with the generator method described above, is shown below:
Mc14 = 1379
196 |
195 |
194 |
193 |
6 |
7 |
5 |
191 |
190 |
192 |
1 |
4 |
3 |
2 |
182 |
181 |
180 |
179 |
20 |
21 |
19 |
177 |
176 |
178 |
15 |
18 |
17 |
16 |
30 |
31 |
32 |
29 |
165 |
35 |
33 |
163 |
162 |
164 |
34 |
166 |
167 |
168 |
43 |
44 |
45 |
46 |
149 |
150 |
151 |
47 |
48 |
49 |
148 |
152 |
153 |
154 |
50 |
51 |
52 |
53 |
142 |
143 |
144 |
54 |
55 |
56 |
141 |
145 |
146 |
147 |
57 |
58 |
60 |
59 |
135 |
136 |
137 |
61 |
62 |
63 |
134 |
138 |
139 |
140 |
96 |
93 |
105 |
95 |
97 |
103 |
92 |
102 |
98 |
100 |
104 |
101 |
99 |
94 |
78 |
79 |
80 |
81 |
114 |
83 |
116 |
82 |
115 |
84 |
113 |
117 |
118 |
119 |
64 |
65 |
67 |
66 |
128 |
129 |
130 |
68 |
69 |
70 |
127 |
131 |
132 |
133 |
112 |
111 |
90 |
107 |
106 |
108 |
89 |
109 |
85 |
91 |
110 |
88 |
86 |
87 |
71 |
72 |
76 |
74 |
121 |
122 |
123 |
75 |
73 |
77 |
120 |
124 |
125 |
126 |
36 |
37 |
38 |
39 |
156 |
157 |
158 |
40 |
41 |
42 |
155 |
159 |
160 |
161 |
175 |
174 |
173 |
172 |
27 |
171 |
170 |
26 |
22 |
28 |
169 |
25 |
24 |
23 |
189 |
188 |
187 |
186 |
13 |
14 |
12 |
184 |
183 |
185 |
8 |
11 |
10 |
9 |
The Generator Method, as applied for the Simple Magic Square shown above, is illustrated
in Attachment 20.3.11.
The applied Semi Magic Square
results in numerous Essential Different Magic Squares. A few sets of potential diagonals are shown
in Attachment 20.3.12.
Each Essential Different Simple Magic Square corresponds with 322560 transformations, as described below.
-
Any line n can be interchanged with line (15 - n). The possible number of transformations is 27 = 128.
It should be noted that for each square the 180o rotated aspect is included in this collection.
-
Any permutation can be applied to the lines 1, 2, ... 7, provided that the same permutation is applied to the lines 14, 13, ... 8.
The possible number of transformations is 7! = 5040.
The resulting number of transformations, excluding the 180o rotated aspects, is 128/2 * 5040 = 322560.
20.3.2 Simple Magic Squares (14 x 14)
Order 5 Magic Square Inlay
Order 14 Simple Magic Squares with order 5 Square Inlay(s) can be constructed with the generator method.
An example is shown below:
Mc14 = 1379, Mc5 = 685
187 |
85 |
195 |
83 |
135 |
18 |
181 |
182 |
15 |
124 |
19 |
122 |
16 |
17 |
142 |
80 |
192 |
78 |
193 |
13 |
12 |
184 |
3 |
134 |
20 |
131 |
183 |
14 |
136 |
133 |
137 |
141 |
138 |
9 |
10 |
186 |
185 |
143 |
11 |
140 |
2 |
8 |
81 |
196 |
82 |
194 |
132 |
24 |
21 |
180 |
179 |
109 |
110 |
26 |
22 |
23 |
139 |
191 |
79 |
189 |
87 |
4 |
1 |
6 |
188 |
147 |
7 |
146 |
5 |
190 |
29 |
27 |
178 |
28 |
25 |
176 |
175 |
30 |
33 |
177 |
174 |
31 |
173 |
123 |
111 |
34 |
35 |
172 |
32 |
170 |
37 |
36 |
169 |
39 |
168 |
38 |
167 |
171 |
45 |
41 |
44 |
42 |
40 |
164 |
163 |
43 |
97 |
46 |
162 |
165 |
161 |
166 |
155 |
48 |
49 |
84 |
47 |
158 |
160 |
157 |
51 |
50 |
159 |
52 |
156 |
53 |
56 |
55 |
57 |
71 |
54 |
152 |
151 |
59 |
149 |
58 |
150 |
153 |
60 |
154 |
62 |
145 |
63 |
61 |
148 |
144 |
130 |
64 |
65 |
66 |
67 |
107 |
128 |
129 |
69 |
126 |
70 |
68 |
127 |
125 |
121 |
72 |
73 |
98 |
120 |
74 |
117 |
119 |
76 |
116 |
108 |
75 |
115 |
118 |
114 |
86 |
77 |
92 |
113 |
89 |
88 |
112 |
91 |
102 |
90 |
93 |
106 |
104 |
103 |
94 |
95 |
96 |
99 |
105 |
101 |
100 |
The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail
in Attachment 20.3.2.
The applied Square Inlay is an order 5 Associated Magic Square with order 3 Diamond Inlay.
Potential Order 5 Magic Squares with Diamond Inlays might be constructed for the integers {1 ... 196} with routine
MgcSqr2032.
Alternatively Order 5 Simple Magic, Associated, Pan Magic or Ultra Magic Squares can be used as Square Inlay(s).
20.3.3 Simple Magic Squares (14 x 14)
Order 6 Magic Square Inlay
Order 14 Simple Magic Squares with order 6 Square Inlay(s) can be constructed with the generator method.
An example is shown below:
Mc14 = 1379, Mc6 = 684
36 |
119 |
181 |
48 |
107 |
193 |
21 |
169 |
167 |
3 |
22 |
120 |
168 |
25 |
183 |
118 |
38 |
189 |
112 |
44 |
18 |
172 |
19 |
20 |
170 |
101 |
171 |
24 |
51 |
104 |
196 |
33 |
122 |
178 |
175 |
15 |
16 |
23 |
173 |
174 |
17 |
102 |
180 |
121 |
35 |
192 |
109 |
47 |
182 |
11 |
176 |
14 |
12 |
179 |
13 |
108 |
39 |
116 |
184 |
45 |
110 |
190 |
187 |
7 |
185 |
186 |
8 |
10 |
9 |
103 |
195 |
106 |
50 |
177 |
124 |
32 |
194 |
4 |
188 |
6 |
2 |
191 |
5 |
105 |
29 |
28 |
164 |
27 |
67 |
162 |
26 |
163 |
30 |
165 |
161 |
31 |
166 |
160 |
159 |
157 |
40 |
37 |
52 |
34 |
41 |
156 |
42 |
158 |
151 |
43 |
155 |
154 |
147 |
53 |
149 |
55 |
68 |
46 |
54 |
150 |
49 |
152 |
153 |
56 |
148 |
99 |
57 |
144 |
59 |
58 |
62 |
146 |
60 |
143 |
61 |
145 |
141 |
63 |
142 |
98 |
64 |
66 |
69 |
140 |
72 |
65 |
139 |
137 |
135 |
136 |
70 |
138 |
77 |
71 |
73 |
75 |
1 |
134 |
133 |
74 |
85 |
78 |
131 |
132 |
129 |
76 |
130 |
128 |
79 |
83 |
123 |
127 |
126 |
80 |
84 |
81 |
86 |
125 |
92 |
100 |
82 |
111 |
87 |
89 |
90 |
117 |
115 |
88 |
113 |
93 |
94 |
114 |
95 |
97 |
96 |
91 |
The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail
in Attachment 20.3.3.
The applied Square Inlay is an order 6 Most Perfect Magic Square.
Potential Order 6 Most Perfect Magic Squares might be constructed for the integers {1 ... 196} with routine
MgcSqr2033.
Alternatively other types of Order 6 Magic Squares (ref. Sections 6)
can be used as Square Inlay(s).
20.3.4 Simple Magic Squares (14 x 14)
Order 7 Magic Square Inlay
Order 14 Simple Magic Squares with order 7 Square Inlay(s) can be constructed with the generator method.
An example is shown below:
Mc14 = 1379, Mc7 = 798
109 |
123 |
135 |
97 |
103 |
110 |
121 |
24 |
29 |
190 |
26 |
143 |
27 |
142 |
106 |
115 |
94 |
126 |
132 |
108 |
117 |
21 |
25 |
191 |
22 |
150 |
23 |
149 |
98 |
127 |
112 |
133 |
92 |
137 |
99 |
18 |
19 |
192 |
158 |
20 |
17 |
157 |
138 |
104 |
100 |
114 |
128 |
124 |
90 |
170 |
4 |
16 |
169 |
14 |
193 |
15 |
129 |
91 |
136 |
95 |
116 |
101 |
130 |
175 |
10 |
13 |
12 |
174 |
194 |
3 |
111 |
120 |
96 |
102 |
134 |
113 |
122 |
179 |
178 |
11 |
9 |
7 |
195 |
2 |
107 |
118 |
125 |
131 |
93 |
105 |
119 |
183 |
182 |
8 |
6 |
1 |
196 |
5 |
30 |
187 |
37 |
188 |
34 |
31 |
28 |
33 |
185 |
186 |
189 |
35 |
32 |
184 |
176 |
38 |
40 |
39 |
42 |
168 |
36 |
41 |
47 |
180 |
181 |
171 |
43 |
177 |
45 |
49 |
50 |
46 |
172 |
48 |
44 |
167 |
159 |
51 |
173 |
166 |
53 |
156 |
54 |
88 |
163 |
77 |
56 |
58 |
165 |
57 |
89 |
55 |
139 |
52 |
162 |
164 |
60 |
67 |
62 |
87 |
59 |
64 |
161 |
160 |
155 |
140 |
63 |
154 |
86 |
61 |
141 |
69 |
151 |
68 |
71 |
66 |
65 |
70 |
152 |
72 |
153 |
148 |
73 |
80 |
75 |
83 |
78 |
76 |
147 |
146 |
82 |
81 |
145 |
74 |
79 |
144 |
85 |
84 |
The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail
in Attachment 20.3.4.
The applied Square Inlay is an order 7 Associated Magic Square with order 3 and 4 Diamond Inlays.
Potential Order 7 Associated Magic Squares - with order 3 and 4 Diamond Inlays - might be constructed for the integers {1 ... 196} with routine
MgcSqr2034.
Alternatively other types of Order 7 Magic Squares (ref. Sections 7)
can be used as Square Inlay(s).
20.3.5 Simple Magic Squares (14 x 14)
Order 9 Magic Square Inlay
Order 14 Simple Magic Squares with order 9 Square Inlay(s) can be constructed with the generator method.
An example is shown below:
Mc14 = 1379, Mc9 = 1026
115 |
131 |
141 |
137 |
74 |
81 |
117 |
107 |
123 |
160 |
157 |
14 |
5 |
17 |
75 |
139 |
127 |
118 |
84 |
150 |
151 |
99 |
83 |
158 |
9 |
3 |
16 |
167 |
85 |
79 |
152 |
126 |
94 |
142 |
136 |
119 |
93 |
11 |
163 |
164 |
13 |
2 |
125 |
80 |
108 |
96 |
104 |
112 |
140 |
128 |
133 |
165 |
4 |
166 |
10 |
8 |
146 |
138 |
130 |
122 |
114 |
106 |
98 |
90 |
82 |
169 |
1 |
7 |
6 |
170 |
95 |
100 |
88 |
116 |
124 |
132 |
120 |
148 |
103 |
37 |
36 |
72 |
168 |
40 |
135 |
109 |
92 |
86 |
134 |
102 |
76 |
149 |
143 |
15 |
156 |
71 |
41 |
70 |
145 |
129 |
77 |
78 |
144 |
110 |
101 |
89 |
153 |
18 |
68 |
43 |
69 |
155 |
105 |
121 |
111 |
147 |
154 |
91 |
87 |
97 |
113 |
39 |
19 |
67 |
162 |
66 |
21 |
25 |
22 |
23 |
194 |
24 |
57 |
20 |
195 |
26 |
191 |
193 |
192 |
196 |
190 |
33 |
30 |
186 |
27 |
31 |
32 |
28 |
29 |
189 |
44 |
185 |
187 |
188 |
35 |
183 |
64 |
42 |
34 |
184 |
161 |
182 |
12 |
38 |
181 |
45 |
159 |
59 |
47 |
61 |
65 |
53 |
46 |
56 |
48 |
50 |
63 |
180 |
177 |
178 |
176 |
179 |
60 |
51 |
172 |
49 |
52 |
58 |
55 |
73 |
54 |
174 |
173 |
171 |
175 |
62 |
The Generator Method, as applied for the Inlaid Magic Square shown above, is illustrated and described in detail
in Attachment 20.3.5.
The applied Square Inlay is an order 9 Associated Magic Square with order 4 and 5 Diamond Inlays.
Potential Order 9 Associated Magic Squares - with order 4 and 5 Diamond Inlays - might be constructed as described in
Secion 18.4.3.
Also for following example:
|