10.2 Concentric, Eccentric and Inlaid Magic Squares
20.2.1 Concentric Magic Squares (14 x 14)
A 14th order Concentric Magic Square consists of a Concentric Magic Square of the 12th order
with a border around it, as illustrated below.
a1 |
a2 |
a3 |
a4 |
a5 |
a6 |
a7 |
a8 |
a9 |
a10 |
a11 |
a12 |
a13 |
a14 |
a15 |
a16 |
a17 |
a18 |
a19 |
a20 |
a21 |
a22 |
a23 |
a24 |
a25 |
a26 |
a27 |
a28 |
a29 |
a30 |
a31 |
a32 |
a33 |
a34 |
a35 |
a36 |
a37 |
a38 |
a39 |
a40 |
a41 |
a42 |
a43 |
a44 |
a45 |
a46 |
a47 |
a48 |
a49 |
a50 |
a51 |
a52 |
a53 |
a54 |
a55 |
a56 |
a57 |
a58 |
a59 |
a60 |
a61 |
a62 |
a63 |
a64 |
a65 |
a66 |
a67 |
a68 |
a69 |
a70 |
a71 |
a72 |
a73 |
a74 |
a75 |
a76 |
a77 |
a78 |
a79 |
a80 |
a81 |
a82 |
a83 |
a84 |
a85 |
a86 |
a87 |
a88 |
a89 |
a90 |
a91 |
a92 |
a93 |
a94 |
a95 |
a96 |
a97 |
a98 |
a99 |
a100 |
a101 |
a102 |
a103 |
a104 |
a105 |
a106 |
a107 |
a108 |
a109 |
a110 |
a111 |
a112 |
a113 |
a114 |
a115 |
a116 |
a117 |
a118 |
a119 |
a120 |
a121 |
a122 |
a123 |
a124 |
a125 |
a126 |
a127 |
a128 |
a129 |
a130 |
a131 |
a132 |
a133 |
a134 |
a135 |
a136 |
a137 |
a138 |
a139 |
a140 |
a141 |
a142 |
a143 |
a144 |
a145 |
a146 |
a147 |
a148 |
a149 |
a150 |
a151 |
a152 |
a153 |
a154 |
a155 |
a156 |
a157 |
a158 |
a159 |
a160 |
a161 |
a162 |
a163 |
a164 |
a165 |
a166 |
a167 |
a168 |
a169 |
a170 |
a171 |
a172 |
a173 |
a174 |
a175 |
a176 |
a177 |
a178 |
a179 |
a180 |
a181 |
a182 |
a183 |
a184 |
a185 |
a186 |
a187 |
a188 |
a189 |
a190 |
a191 |
a192 |
a193 |
a194 |
a195 |
a196 |
Based on the linear equations defining the border of a Concentric Magic Square of order 14:
a(184)= 1379 - a(183)-a(185)-a(186)-a(187)-a(188)-a(189)-a(190)-a(191)-a(192)-a(193)-a(194)-a(195)-a(196)
a( 28)= 1379 - a( 14)-a( 42)-a( 56)-a( 70)-a( 84)-a( 98)-a(112)-a(126)-a(140)-a(154)-a(168)-a(182)-a(196)
a(1) = 197 - a(196)
a(2) = 197 - a(184)
a(3) = 197 - a(185)
a(4) = 197 - a(186)
a(5) = 197 - a(187)
a(6) = 197 - a(188)
a(7) = 197 - a(189)
|
a( 8) = 197 - a(190)
a( 9) = 197 - a(191)
a(10) = 197 - a(192)
a(11) = 197 - a(193)
a(12) = 197 - a(194)
a(13) = 197 - a(195)
a(14) = 197 - a(183)
|
a(15) = 197 - a(28)
a(29) = 197 - a(42)
a(43) = 197 - a(56)
a(57) = 197 - a(70)
a(71) = 197 - a(84)
a(85) = 197 - a(98)
|
a( 99) = 197 - a(112)
a(113) = 197 - a(126)
a(127) = 197 - a(140)
a(141) = 197 - a(154)
a(155) = 197 - a(168)
a(169) = 197 - a(182)
|
a routine can be written to generate the borders for subject Concentric Magic Squares
(ref. MgcSqrs14a).
Attachment 20.2.1 shows a few suitable borders for Concentric Magic Squares of order 14.
Each border shown corresponds with (12!)2 = 2,29 * 1017 borders with the same corner pairs, which can be obtained by permutation of the horizontal/vertical (non corner) pairs.
A full enumeration as executed for 8 x 8 Concentric Magic Squares in Section 8.8.2 is however beyond the scope of this section.
Note:
The 12th order Concentric Magic Center Squares should be based on the consecutive integers 27, 28, ... 170.
20.2.2 Bordered Magic Squares (14 x 14)
Miscellaneous Inlays
Also Non Concentric Magic Squares of the 12th order e.g. as described and constructed in
Section 12.1. Section 12.2 and
Section 22.5
can be used as Center Squares for 14th order Bordered Magic Squares.
The Embedded Magic Squares will have a Magic Sum s12 = 1182 and might be based on the consecutive integers 27, 28, ... 170.
Attachment 20.2.2
contains - based on some of the described Magic Squares of order 12 - a few examples of Bordered Magic Squares.
20.2.3 Bordered Magic Squares (14 x 14)
Split Border
Alternatively a 14th order Bordered Magic Square with Magic Sum s14 = 1379 can be constructed based on:
-
a Concentric Magic Center Square of order 10 with Magic Sum s10 = 985;
-
48 pairs, each summing to 197, surrounding the (Concentric) Magic Center Square;
-
a split of the supplementary rows and columns into three parts:
two summing to s4 = 394 and one to s6 = 591.
as illustrated below:
a1 |
a2 |
a3 |
a4 |
a5 |
a6 |
a7 |
a8 |
a9 |
a10 |
a11 |
a12 |
a13 |
a14 |
a15 |
a16 |
a17 |
a18 |
a19 |
a20 |
a21 |
a22 |
a23 |
a24 |
a25 |
a26 |
a27 |
a28 |
a29 |
a30 |
a31 |
a32 |
a33 |
a34 |
a35 |
a36 |
a37 |
a38 |
a39 |
a40 |
a41 |
a42 |
a43 |
a44 |
a45 |
a46 |
a47 |
a48 |
a49 |
a50 |
a51 |
a52 |
a53 |
a54 |
a55 |
a56 |
a57 |
a58 |
a59 |
a60 |
a61 |
a62 |
a63 |
a64 |
a65 |
a66 |
a67 |
a68 |
a69 |
a70 |
a71 |
a72 |
a73 |
a74 |
a75 |
a76 |
a77 |
a78 |
a79 |
a80 |
a81 |
a82 |
a83 |
a84 |
a85 |
a86 |
a87 |
a88 |
a89 |
a90 |
a91 |
a92 |
a93 |
a94 |
a95 |
a96 |
a97 |
a98 |
a99 |
a100 |
a101 |
a102 |
a103 |
a104 |
a105 |
a106 |
a107 |
a108 |
a109 |
a110 |
a111 |
a112 |
a113 |
a114 |
a115 |
a116 |
a117 |
a118 |
a119 |
a120 |
a121 |
a122 |
a123 |
a124 |
a125 |
a126 |
a127 |
a128 |
a129 |
a130 |
a131 |
a132 |
a133 |
a134 |
a135 |
a136 |
a137 |
a138 |
a139 |
a140 |
a141 |
a142 |
a143 |
a144 |
a145 |
a146 |
a147 |
a148 |
a149 |
a150 |
a151 |
a152 |
a153 |
a154 |
a155 |
a156 |
a157 |
a158 |
a159 |
a160 |
a161 |
a162 |
a163 |
a164 |
a165 |
a166 |
a167 |
a168 |
a169 |
a170 |
a171 |
a172 |
a173 |
a174 |
a175 |
a176 |
a177 |
a178 |
a179 |
a180 |
a181 |
a182 |
a183 |
a184 |
a185 |
a186 |
a187 |
a188 |
a189 |
a190 |
a191 |
a192 |
a193 |
a194 |
a195 |
a196 |
The supplementary rows and columns can be described by following linear equations:
Typical Corner Section (4 x 4):
a'(1) |
a'(2) |
a'(3) |
a'(4) |
a'(5) |
a'(6) |
a'(7) |
a'(8) |
a'(9) |
a'(10) |
- |
- |
a'(11) |
a'(12) |
- |
- |
| |
a'( 4) = 394 - a'( 3) - a'(2) - a'(1)
a'( 5) = 197 - a'( 2)
a'( 6) = 197 - a'( 1)
a'( 7) = 197 - a'( 3)
a'( 8) = 197 - a'( 4)
a'(11) = 394 - a'( 9) - a'(5) - a'(1)
a'(10) = 197 - a'( 9)
a'(12) = 197 - a'(11)
|
Typical Border Rectangle (2 x 6):
a'(1) |
a'(2) |
a'(3) |
a'(4) |
a'(5) |
a'(6) |
a'(7) |
a'(8) |
a'(9) |
a'(10) |
a'(11) |
a'(12) |
| |
a'( 6) = 591 - a'(5) - a'(4) - a'(3) - a'(2) - a'(1)
a'( 7) = 197 - a'(1)
a'( 8) = 197 - a'(2)
a'( 9) = 197 - a'(3)
a'(10) = 197 - a'(4)
a'(11) = 197 - a'(5)
a'(12) = 197 - a'(6)
|
Based on the equations above, procedures can be developed:
-
to generate, based on the distinct integers {1 ... 196}, four Corner Segments (4 x 4);
-
to complete the exterior border with four Magic Rectangles (2 x 6);
-
to construct, based on the remaining 100 distinct integers, the border of the Concentric Center Square (10 x 10);
-
to construct, based on the remaining 64 distinct integers, the embedded Concentric Magic Square of order 8.
The first occuring Bordered Magic Square is shown below:
1 |
4 |
194 |
195 |
24 |
25 |
34 |
168 |
169 |
171 |
190 |
188 |
10 |
6 |
193 |
196 |
3 |
2 |
173 |
172 |
163 |
29 |
28 |
26 |
7 |
9 |
191 |
187 |
8 |
189 |
48 |
145 |
144 |
143 |
142 |
141 |
66 |
57 |
49 |
50 |
182 |
15 |
192 |
5 |
138 |
123 |
80 |
120 |
79 |
119 |
76 |
122 |
69 |
59 |
11 |
186 |
42 |
155 |
136 |
68 |
108 |
84 |
85 |
110 |
116 |
88 |
129 |
61 |
30 |
167 |
43 |
154 |
135 |
130 |
83 |
94 |
95 |
101 |
104 |
114 |
67 |
62 |
31 |
166 |
51 |
146 |
134 |
73 |
86 |
99 |
106 |
92 |
97 |
111 |
124 |
63 |
39 |
158 |
150 |
47 |
65 |
125 |
90 |
96 |
93 |
103 |
102 |
107 |
72 |
132 |
162 |
35 |
152 |
45 |
64 |
71 |
115 |
105 |
100 |
98 |
91 |
82 |
126 |
133 |
164 |
33 |
153 |
44 |
60 |
70 |
109 |
113 |
112 |
87 |
81 |
89 |
127 |
137 |
165 |
32 |
175 |
22 |
58 |
128 |
117 |
77 |
118 |
78 |
121 |
75 |
74 |
139 |
14 |
183 |
27 |
170 |
147 |
52 |
53 |
54 |
55 |
56 |
131 |
140 |
148 |
149 |
178 |
19 |
174 |
179 |
21 |
20 |
36 |
37 |
46 |
156 |
157 |
159 |
13 |
16 |
185 |
180 |
18 |
23 |
176 |
177 |
161 |
160 |
151 |
41 |
40 |
38 |
184 |
181 |
17 |
12 |
The border shown above corresponds with
(4! * 12582912) * (4! * 14404) = 3,12 * 1022
borders as:
-
The Corner Squares can be arranged in 4! ways and belong each to a collection of 64, 32, 96 or 64 Corner Squares;
-
The Rectangles can be arranged in 4! ways and belong each to a collection of 2 * 6! = 1440 Rectangles.
Based on the distinct integers applied in the border shown above, numerous suitable sets of unique Corner Squares can be found.
20.2.4 Bordered Magic Squares (14 x 14)
Composed Border
The 14th order Composed Magic Square shown below, with Magic Sum s14 = 1379 , consists of:
-
a Border composed out of:
- 4 Associated Magic Squares of order 4 with Magic Sum s4 = 394
- 4 Associated Magic Rectangles order 4 x 6 with s4 = 394 and s6 = 591
-
a Concentric Magic Center Square composed of:
- an order 6 Concentric Border with Magic Sum s6 = 591
- an order 4 Pan Magic Center Square with Magic Sum s4 = 394
196 |
189 |
5 |
4 |
164 |
163 |
146 |
37 |
40 |
41 |
188 |
181 |
13 |
12 |
3 |
6 |
190 |
195 |
39 |
36 |
43 |
152 |
159 |
162 |
11 |
14 |
182 |
187 |
2 |
7 |
191 |
194 |
35 |
38 |
45 |
154 |
161 |
158 |
10 |
15 |
183 |
186 |
193 |
192 |
8 |
1 |
156 |
157 |
160 |
51 |
34 |
33 |
185 |
184 |
16 |
9 |
132 |
71 |
69 |
122 |
83 |
113 |
106 |
105 |
95 |
89 |
155 |
48 |
46 |
145 |
130 |
73 |
70 |
121 |
103 |
82 |
85 |
110 |
117 |
94 |
153 |
50 |
47 |
144 |
104 |
81 |
86 |
123 |
101 |
107 |
120 |
79 |
88 |
96 |
129 |
56 |
61 |
148 |
74 |
111 |
116 |
93 |
99 |
87 |
80 |
115 |
112 |
98 |
49 |
136 |
141 |
68 |
76 |
127 |
124 |
67 |
97 |
118 |
109 |
90 |
77 |
100 |
53 |
150 |
147 |
44 |
75 |
128 |
126 |
65 |
108 |
84 |
91 |
92 |
102 |
114 |
52 |
151 |
149 |
42 |
172 |
165 |
29 |
28 |
143 |
142 |
119 |
60 |
64 |
63 |
180 |
173 |
21 |
20 |
27 |
30 |
166 |
171 |
59 |
62 |
66 |
125 |
140 |
139 |
19 |
22 |
174 |
179 |
26 |
31 |
167 |
170 |
58 |
57 |
72 |
131 |
135 |
138 |
18 |
23 |
175 |
178 |
169 |
168 |
32 |
25 |
134 |
133 |
137 |
78 |
55 |
54 |
177 |
176 |
24 |
17 |
The Composed Square shown above corresponds with n14 = 1.769.472 * (4! * 3844) * (4! * 384 * 11523)
= 1,30 * 1031 squares as:
-
The Center Square belongs to a collection of 8 * (4!)2 * 384 = 1.769.472 Center Squares;
-
The Corner Squares can be arranged in 4! ways and belong each to a collection of 384 Corner Squares;
-
The Border Rectangles can be arranged in 4! ways and belong each to a collection of 384 or 1152 Rectangles.
Based on the principles described in previous sections, a fast procedure (MgcSqrs14d) can be developed:
-
to read the previously generated 6 x 6 Concentric Magic Center Square;
-
to generate, based on the remainder of the pairs, four 4 x 4 Associated Magic Squares;
-
to complete the Composed Border of order 14 with four 4 x 6 Associated Magic Rectangles.
Attachment 20.2.41 shows miscellaneous order 14 Composed Border Magic Squares.
Each (unique) square shown corresponds with numerous squares (order of magnitude n14).
Note:
If the applied properties are changed to:
-
the opposite Semi Magic Corner Squares (4 x 4) are Anti Symmetric and Complementary;
-
the opposite Magic Rectangles (4 x 6) are Anti Symmetric and Complementary;
-
the Magic Center Square (6 x 6) is Almost Associated;
the 14th order Composed Magic Square will be Almost Associated.
Attachment 20.2.42 shows miscellanous order 14 Almost Associated Composed Magic Squares (ref. MgcSqrs14e).
20.2.5 Eccentric Magic Squares (14 x 14)
A 14th order Eccentric Magic Square consists of one Magic Corner Square of the 12th order, supplemented with two rows and two columns - further referred to as 'border' - as illustrated by following example.
1 |
2 |
4 |
3 |
189 |
188 |
187 |
186 |
185 |
26 |
22 |
5 |
190 |
191 |
195 |
196 |
193 |
194 |
8 |
9 |
10 |
11 |
12 |
171 |
175 |
192 |
7 |
6 |
182 |
15 |
30 |
39 |
162 |
163 |
37 |
42 |
156 |
159 |
29 |
151 |
48 |
166 |
14 |
183 |
158 |
167 |
35 |
34 |
160 |
155 |
41 |
38 |
168 |
46 |
149 |
31 |
179 |
18 |
45 |
152 |
59 |
139 |
61 |
132 |
137 |
56 |
52 |
62 |
140 |
147 |
178 |
19 |
161 |
36 |
58 |
138 |
136 |
65 |
60 |
141 |
145 |
135 |
57 |
50 |
177 |
20 |
40 |
157 |
54 |
143 |
72 |
124 |
121 |
77 |
123 |
75 |
129 |
67 |
174 |
23 |
47 |
150 |
142 |
55 |
73 |
125 |
76 |
120 |
74 |
122 |
68 |
130 |
25 |
172 |
153 |
44 |
144 |
53 |
128 |
69 |
85 |
88 |
87 |
108 |
116 |
107 |
24 |
173 |
154 |
43 |
134 |
63 |
119 |
78 |
109 |
112 |
110 |
89 |
81 |
90 |
21 |
176 |
33 |
164 |
64 |
133 |
127 |
70 |
83 |
114 |
98 |
101 |
104 |
91 |
13 |
184 |
165 |
32 |
131 |
66 |
71 |
126 |
86 |
111 |
103 |
92 |
97 |
102 |
180 |
17 |
169 |
28 |
51 |
146 |
80 |
117 |
113 |
84 |
93 |
106 |
99 |
96 |
16 |
181 |
27 |
170 |
148 |
49 |
118 |
79 |
115 |
82 |
100 |
95 |
94 |
105 |
The square shown above has been constructed based on the transformation of a Bordered Magic Square with an embedded 12th order Eccentric Magic Center Square as illustrated in Attachment 20.5.1.
The applied border corresponds with (10!)2 = 1,32 * 1013 borders with the same corner pairs, which can be obtained by permutation of the horizontal/vertical (non corner) pairs.
A full enumeration as executed for 8 x 8 Eccentric Magic Squares in Section 8.8.5 is however beyond the scope of this section.
Note:
The 12th order Eccentric Magic Corner Squares should be based on the consecutive integers 27, 28, ... 170.
20.2.6 Inlaid Magic Squares (14 x 14)
Order 5 Pan Magic Square Inlays (4 ea)
The 14th order Inlaid Magic Square shown below:
1 |
191 |
190 |
189 |
188 |
187 |
186 |
185 |
26 |
22 |
5 |
4 |
3 |
2 |
182 |
40 |
66 |
79 |
92 |
144 |
110 |
98 |
148 |
126 |
115 |
104 |
60 |
15 |
180 |
91 |
140 |
48 |
64 |
78 |
122 |
86 |
103 |
56 |
156 |
124 |
114 |
17 |
179 |
72 |
76 |
90 |
139 |
44 |
134 |
74 |
132 |
112 |
102 |
55 |
152 |
18 |
178 |
138 |
43 |
68 |
84 |
88 |
158 |
50 |
54 |
151 |
128 |
120 |
100 |
19 |
177 |
80 |
96 |
136 |
42 |
67 |
62 |
146 |
116 |
108 |
52 |
150 |
127 |
20 |
174 |
165 |
166 |
167 |
169 |
161 |
27 |
159 |
29 |
37 |
35 |
34 |
33 |
23 |
25 |
164 |
163 |
162 |
160 |
168 |
38 |
170 |
36 |
28 |
30 |
31 |
32 |
172 |
24 |
49 |
71 |
82 |
93 |
137 |
51 |
135 |
157 |
131 |
118 |
105 |
53 |
173 |
21 |
94 |
141 |
41 |
73 |
83 |
147 |
39 |
106 |
57 |
149 |
133 |
119 |
176 |
16 |
65 |
85 |
95 |
142 |
45 |
123 |
63 |
125 |
121 |
107 |
58 |
153 |
181 |
14 |
143 |
46 |
69 |
77 |
97 |
111 |
75 |
59 |
154 |
129 |
113 |
109 |
183 |
13 |
81 |
89 |
145 |
47 |
70 |
99 |
87 |
117 |
101 |
61 |
155 |
130 |
184 |
195 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
171 |
175 |
192 |
193 |
194 |
196 |
|
|
is an example of a Bordered Magic Square with Magic Sum s14 = 1379, containing an order 12 Inlaid Magic Center Square (s12 = 1182).
The Magic Center Square has beeen obtained by transformation of an order 12 Inlaid Magic Square with Associated Border as described in detail in
Section 22.6.
Attachment 20.2.6
shows a few examples of subject 14th order Inlaid Bordered Magic Squares.
20.2.7 Inlaid Magic Squares (14 x 14)
Order 4 Pan Magic Square Inlays (9 ea)
The 14th order Inlaid Magic Square shown below:
86 |
87 |
77 |
80 |
180 |
166 |
167 |
157 |
160 |
17 |
54 |
55 |
45 |
48 |
81 |
76 |
90 |
83 |
179 |
161 |
156 |
170 |
163 |
18 |
49 |
44 |
58 |
51 |
88 |
85 |
79 |
78 |
178 |
168 |
165 |
159 |
158 |
19 |
56 |
53 |
47 |
46 |
75 |
82 |
84 |
89 |
177 |
155 |
162 |
164 |
169 |
20 |
43 |
50 |
52 |
57 |
192 |
191 |
190 |
189 |
11 |
188 |
187 |
184 |
25 |
12 |
4 |
3 |
2 |
1 |
70 |
71 |
61 |
64 |
176 |
102 |
103 |
93 |
96 |
21 |
134 |
135 |
125 |
128 |
65 |
60 |
74 |
67 |
175 |
97 |
92 |
106 |
99 |
22 |
129 |
124 |
138 |
131 |
72 |
69 |
63 |
62 |
26 |
104 |
101 |
95 |
94 |
171 |
136 |
133 |
127 |
126 |
59 |
66 |
68 |
73 |
24 |
91 |
98 |
100 |
105 |
173 |
123 |
130 |
132 |
137 |
5 |
6 |
7 |
8 |
185 |
9 |
10 |
13 |
172 |
186 |
193 |
194 |
195 |
196 |
150 |
151 |
141 |
144 |
23 |
38 |
39 |
29 |
32 |
174 |
118 |
119 |
109 |
112 |
145 |
140 |
154 |
147 |
16 |
33 |
28 |
42 |
35 |
181 |
113 |
108 |
122 |
115 |
152 |
149 |
143 |
142 |
15 |
40 |
37 |
31 |
30 |
182 |
120 |
117 |
111 |
110 |
139 |
146 |
148 |
153 |
14 |
27 |
34 |
36 |
41 |
183 |
107 |
114 |
116 |
121 |
|
330 |
650 |
202 |
266 |
394 |
522 |
586 |
138 |
458 |
|
is an example of an Inlaid Magic Square with Magic Sum s14 = 1379, with:
-
Nine each 4th order Pan Magic Square Inlays with different Magic Sum
-
Twentysix supplementary pairs, each summing to s14 / 7 = 197
The Inlaid Magic Squares can be obtained by transformation of Bordered Magic Squares with Composed Magic Center Squares
(ref. Attachment 20.2.2).
20.2.8 Composed Magic Squares (14 x 14)
Overlapping Sub Squares
Following 14th order Composed Magic Square, with overlapping sub squares
and Magic Sum s14 = 1379, contains following sub squares:
-
One 6th order (Almost Associated) Magic Center Square C;
-
Two each other overlapping 8th order Eccentric Magic Squares A1 and A2;
-
Two each other overlapping 10th order Eccentric Magic Squares B1 and B2;
-
Two 4th order (Simple) Magic Squares M1 and M2;
as illustrated below:
118 |
83 |
85 |
108 |
25 |
171 |
170 |
28 |
168 |
31 |
164 |
38 |
154 |
36 |
84 |
109 |
107 |
94 |
172 |
26 |
27 |
169 |
29 |
166 |
33 |
159 |
161 |
43 |
103 |
90 |
88 |
113 |
1 |
195 |
191 |
7 |
9 |
189 |
4 |
192 |
158 |
39 |
89 |
112 |
114 |
79 |
196 |
2 |
6 |
190 |
188 |
8 |
5 |
193 |
40 |
157 |
97 |
100 |
182 |
15 |
141 |
60 |
131 |
59 |
139 |
61 |
187 |
10 |
156 |
41 |
150 |
47 |
16 |
181 |
68 |
73 |
70 |
128 |
123 |
129 |
34 |
163 |
42 |
155 |
117 |
80 |
24 |
173 |
121 |
122 |
64 |
78 |
72 |
134 |
186 |
11 |
54 |
143 |
116 |
81 |
23 |
174 |
63 |
125 |
119 |
133 |
75 |
76 |
185 |
12 |
46 |
151 |
120 |
77 |
162 |
35 |
62 |
74 |
69 |
127 |
124 |
135 |
184 |
13 |
32 |
165 |
82 |
115 |
22 |
175 |
136 |
137 |
138 |
66 |
58 |
56 |
3 |
194 |
142 |
55 |
126 |
71 |
180 |
18 |
21 |
160 |
177 |
19 |
30 |
183 |
106 |
86 |
92 |
110 |
57 |
140 |
179 |
17 |
176 |
37 |
20 |
178 |
167 |
14 |
93 |
102 |
98 |
101 |
67 |
144 |
132 |
52 |
146 |
50 |
148 |
48 |
45 |
153 |
104 |
95 |
99 |
96 |
53 |
130 |
65 |
145 |
51 |
147 |
49 |
149 |
152 |
44 |
91 |
111 |
105 |
87 |
Attachment 20.2.81 shows, miscellaneous order 14 Composed Magic Squares
(ref. MgcSqrs14b).
The corresponding Composed Magic Squares of order 18 contain, in addition to the sub squares mentioned above, following Corner Squares:
-
Two 6th order Eccentric Magic Squares
F1 and F2 with embedded
M1 and M2;
-
Two 12th order Eccentric Magic Squares
D1 and D2 with embedded
B1 and B2;
Attachment 20.2.82 shows, for the sake of completeness, an example of a Composed Magic Squares of order 18
(ref. MgcSqrs14c).
20.2.9 Composed Magic Squares (14 x 14)
Center Cross
The 14th order Composed Magic Square shown below:
155 |
40 |
41 |
150 |
160 |
45 |
182 |
15 |
140 |
54 |
63 |
133 |
142 |
59 |
42 |
157 |
156 |
47 |
37 |
152 |
180 |
17 |
57 |
143 |
134 |
64 |
55 |
138 |
34 |
36 |
39 |
153 |
164 |
165 |
179 |
18 |
52 |
53 |
56 |
137 |
146 |
147 |
163 |
161 |
158 |
44 |
33 |
32 |
178 |
19 |
145 |
144 |
141 |
60 |
51 |
50 |
29 |
30 |
31 |
162 |
169 |
170 |
177 |
20 |
46 |
48 |
49 |
135 |
154 |
159 |
168 |
167 |
166 |
35 |
28 |
27 |
174 |
23 |
151 |
149 |
148 |
62 |
43 |
38 |
191 |
190 |
189 |
188 |
187 |
186 |
1 |
2 |
185 |
26 |
22 |
5 |
4 |
3 |
6 |
7 |
8 |
9 |
10 |
11 |
195 |
196 |
12 |
171 |
175 |
192 |
193 |
194 |
120 |
72 |
84 |
117 |
122 |
76 |
25 |
172 |
105 |
88 |
98 |
102 |
104 |
94 |
77 |
125 |
113 |
80 |
75 |
121 |
24 |
173 |
92 |
109 |
99 |
95 |
93 |
103 |
70 |
71 |
74 |
119 |
128 |
129 |
21 |
176 |
89 |
90 |
91 |
100 |
110 |
111 |
127 |
126 |
123 |
78 |
69 |
68 |
16 |
181 |
108 |
107 |
106 |
97 |
87 |
86 |
65 |
66 |
67 |
118 |
136 |
139 |
14 |
183 |
82 |
83 |
85 |
101 |
116 |
124 |
132 |
131 |
130 |
79 |
61 |
58 |
13 |
184 |
115 |
114 |
112 |
96 |
81 |
73 |
is an example of a Composed Magic Square with Magic Sum s14 = 1379, composed of:
-
Four each 6th order Magic Corner Squares (s6 = 6 * s14 / 14 = 591)
-
Twentysix supplementary pairs, each summing to 2 * s14 / 14 = 197
The Composed Magic Squares can be obtained by transformation of Bordered Magic Squares with Composed Magic Center Squares
(ref. Section 22.6).
Attachment 27.2
shows a few examples of subject 14th order Composed and related Bordered Magic Squares.
An alternative method to construct Center Cross based Magic Squares has been illustrated in Section 29.2.
10.2.10 Order 5, 6, 7, 9 and 10 Single Magic Square Inlays
The construction of Order 14 Simple Magic Squares with Order 5, 6, 7, 9 or 10 Single Magic Square Inlays will be described in
Sections 20.2.2, 3, 4, 5 and 6.
|