Office Applications and Entertainment, Magic Squares |
||
Exhibit P38 | About the Author |
P38
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60 a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72 a73 a74 a75 a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 a87 a88 a89 a90 a91 a92 a93 a94 a95 a96 a97 a98 a99 a100 a101 a102 a103 a104 a105 a106 a107 a108 a109 a110 a111 a112 a113 a114 a115 a116 a117 a118 a119 a120 a121 a122 a123 a124 a125 a126 a127 a128 a129 a130 a131 a132 a133 a134 a135 a136 a137 a138 a139 a140 a141 a142 a143 a144 a145 a146 a147 a148 a149 a150 a151 a152 a153 a154 a155 a156 a157 a158 a159 a160 a161 a162 a163 a164 a165 a166 a167 a168 a169 a170 a171 a172 a173 a174 a175 a176 a177 a178 a179 a180 a181 a182 a183 a184 a185 a186 a187 a188 a189 a190 a191 a192 a193 a194 a195 a196 a197 a198 a199 a200 a201 a202 a203 a204 a205 a206 a207 a208 a209 a210 a211 a212 a213 a214 a215 a216 a217 a218 a219 a220 a221 a222 a223 a224 a225 a226 a227 a228 a229 a230 a231 a232 a233 a234 a235 a236 a237 a238 a239 a240 a241 a242 a243 a244 a245 a246 a247 a248 a249 a250 a251 a252 a253 a254 a255 a256 a257 a258 a259 a260 a261 a262 a263 a264 a265 a266 a267 a268 a269 a270 a271 a272 a273 a274 a275 a276 a277 a278 a279 a280 a281 a282 a283 a284 a285 a286 a287 a288 a289
Defining Equations
a(169) = s1 - a(265) - a(271) - s(4) a(155) = s1 - a(257) - a(263) - s(3) a( 27) = s1 - a( 33) - a(135) - s(2) a( 19) = s1 - a( 25) - a(121) - s(1) a( 19) = Pr15 - a(271) a( 25) = Pr15 - a(263) a( 27) = Pr15 - a(265) a( 33) = Pr15 - a(257) a(121) = Pr15 - a(135) a(155) = Pr15 - a(169)Reduced Equations
a(135) = -11*s1/17 - a(263) - a(271) + s(1) a(169) = s1 - a(265) - a(271) - s(4) a(257) = -24*s1/17 - a(263) - a(265) - a(271) + s(1) + s(2) s(1) = 56*s1/17 - s(2) - s(3) - s(4) a( 19) = Pr15 - a(271) a( 25) = Pr15 - a(263) a( 27) = Pr15 - a(265) a( 33) = Pr15 - a(257) a(121) = Pr15 - a(135) a(155) = Pr15 - a(169)
with s1 the Magic Sum and s(1), s(2), s(3) and s(4) the sums of the pattern elements within the Ultra Magic Centre Square.
The applied range (order 15 border) results from the construction method based on Semi Latin Squares:
{19 ... 33, 36, 50, 53, 67, 70, 84, 87, 101, 104, 118, 121, 135, 138
as illustrated in Section 17.2.4.
Construction Quadrant P38 Bordered Magic Squares
While starting with a preselected Ultra Magic Centre Square (ref. Section 13.2.2): |
Ultra Magic
155 67 114 86 63 96 26 46 27 9 159 136 121 19 43 38 2 166 138 128 148 78 111 79 61 94 126 146 71 108 90 54 101 21 50 31 13 163 131 98 14 48 29 6 160 142 119 153 73 115 83 65 135 130 150 66 113 81 58 95 25 41 36 8 167 60 102 18 52 33 1 165 133 123 147 77 106 88 158 140 125 154 70 117 85 53 100 16 45 30 12 82 64 93 23 47 37 5 169 137 118 152 68 110 3 162 134 129 145 75 112 89 57 104 20 40 35 105 87 55 97 17 51 28 10 164 141 122 156 72 39 7 157 139 120 149 69 116 80 62 99 24 44 76 109 91 59 92 22 42 32 4 168 132 127 151 49 34 11 161 143 124 144 74 107 84 56 103 15 A13
11 1 9 7 10 4 12 6 0 8 2 5 3 5 3 11 1 9 7 10 4 12 6 0 8 2 8 2 5 3 11 1 9 7 10 4 12 6 0 6 0 8 2 5 3 11 1 9 7 10 4 12 4 12 6 0 8 2 5 3 11 1 9 7 10 7 10 4 12 6 0 8 2 5 3 11 1 9 1 9 7 10 4 12 6 0 8 2 5 3 11 3 11 1 9 7 10 4 12 6 0 8 2 5 2 5 3 11 1 9 7 10 4 12 6 0 8 0 8 2 5 3 11 1 9 7 10 4 12 6 12 6 0 8 2 5 3 11 1 9 7 10 4 10 4 12 6 0 8 2 5 3 11 1 9 7 9 7 10 4 12 6 0 8 2 5 3 11 1 B13
11 5 8 6 4 7 1 3 2 0 12 10 9 1 3 2 0 12 10 9 11 5 8 6 4 7 9 11 5 8 6 4 7 1 3 2 0 12 10 7 1 3 2 0 12 10 9 11 5 8 6 4 10 9 11 5 8 6 4 7 1 3 2 0 12 4 7 1 3 2 0 12 10 9 11 5 8 6 12 10 9 11 5 8 6 4 7 1 3 2 0 6 4 7 1 3 2 0 12 10 9 11 5 8 0 12 10 9 11 5 8 6 4 7 1 3 2 8 6 4 7 1 3 2 0 12 10 9 11 5 2 0 12 10 9 11 5 8 6 4 7 1 3 5 8 6 4 7 1 3 2 0 12 10 9 11 3 2 0 12 10 9 11 5 8 6 4 7 1
a suitable Ultra Magic Centre Square can be constructed:
A13'
13 3 11 9 12 6 14 8 2 10 4 7 5 7 5 13 3 11 9 12 6 14 8 2 10 4 10 4 7 5 13 3 11 9 12 6 14 8 2 8 2 10 4 7 5 13 3 11 9 12 6 14 6 14 8 2 10 4 7 5 13 3 11 9 12 9 12 6 14 8 2 10 4 7 5 13 3 11 3 11 9 12 6 14 8 2 10 4 7 5 13 5 13 3 11 9 12 6 14 8 2 10 4 7 4 7 5 13 3 11 9 12 6 14 8 2 10 2 10 4 7 5 13 3 11 9 12 6 14 8 14 8 2 10 4 7 5 13 3 11 9 12 6 12 6 14 8 2 10 4 7 5 13 3 11 9 11 9 12 6 14 8 2 10 4 7 5 13 3 B13'
13 7 10 8 6 9 3 5 4 2 14 12 11 3 5 4 2 14 12 11 13 7 10 8 6 9 11 13 7 10 8 6 9 3 5 4 2 14 12 9 3 5 4 2 14 12 11 13 7 10 8 6 12 11 13 7 10 8 6 9 3 5 4 2 14 6 9 3 5 4 2 14 12 11 13 7 10 8 14 12 11 13 7 10 8 6 9 3 5 4 2 8 6 9 3 5 4 2 14 12 11 13 7 10 2 14 12 11 13 7 10 8 6 9 3 5 4 10 8 6 9 3 5 4 2 14 12 11 13 7 4 2 14 12 11 13 7 10 8 6 9 3 5 7 10 8 6 9 3 5 4 2 14 12 11 13 5 4 2 14 12 11 13 7 10 8 6 9 3 M13' = A13' + 17 * B13' + 1
235 123 182 146 115 160 66 94 71 45 243 212 193 59 91 82 38 250 214 200 228 134 179 139 113 158 198 226 127 176 150 106 165 61 98 75 49 247 207 162 54 96 73 42 244 218 191 233 129 183 143 117 211 202 230 122 181 141 110 159 65 89 80 44 251 112 166 58 100 77 37 249 209 195 227 133 174 148 242 216 197 234 126 185 145 105 164 56 93 74 48 142 116 157 63 95 81 41 253 213 190 232 124 178 39 246 210 201 225 131 180 149 109 168 60 88 79 173 147 107 161 57 99 72 46 248 217 194 236 128 83 43 241 215 192 229 125 184 140 114 163 64 92 132 177 151 111 156 62 90 76 40 252 208 199 231 97 78 47 245 219 196 224 130 175 144 108 167 55
Based on this centre square and the applicable key variables, a partly completed order 15 Bordered Magic Square can be constructed, which contains the four P38 Patterns:
which can be completed with a guessing routine (Priem15b) based on the remaining integers of the applicable range:
which can be completed with an exterior border as constructed in Section 17.2.4.
P38 P61
The square shown above corresponds with
8 * (15!)2 *
(1!)2 *
n13 Quadrant (P38, P61) Bordered Magic Squares
(n13 = all suitable order 13 centre squares).
|
About the Author |