Office Applications and Entertainment, Magic Squares | ||
![]() ![]() |
Index | About the Author |
19.0 Special Magic Squares, Prime Numbers, Bent Diagonals
The concept of Prime Number Bent Diagonal Magic Squares as introduced in Section 14.6.16 (Franklin Squares) will be further elaborated in this chapter.
The Franklin Squares are an example of 4 way Bent Diagonal (Semi) Magic Squares.
as all other possible cases can be obtained by means of rotation and (or) reflection.
19.2 Magic Squares (4 x 4) When the equations defining the Left to Right Bent Diagonals of a fourth order Magic Square: a(1) + a(6) + a(10) + a(13) = s1 a(2) + a(7) + a(11) + a(14) = s1 a(3) + a(8) + a(12) + a(15) = s1 a(4) + a(5) + a( 9) + a(16) = s1 are added to the equations describing a Simple Magic Square of the fourth order, the resulting Bent Diagonal Magic Square is described by following equations: a(13) = s1 - a(14) - a(15) - a(16) a(10) = a(11) - a(13) + a(16) a( 9) = 2*s1 - 2*a(11) - a(12) - a(14) - a(15) - 2*a(16) a(8) = 0.5 * s1 - a(12) a(4) = 0.5 * s1 - a(16) a(7) = 0.5 * s1 - a(11) a(3) = 0.5 * s1 - a(15) a(6) = 0.5 * s1 - a(10) a(2) = 0.5 * s1 - a(14) a(5) = 0.5 * s1 - a( 9) a(1) = 0.5 * s1 - a(13)
The consequential symmetry (Axial Symmetrical) is worth to be noticed.
a(1) = s1 - a(8) - a(12) - a(13) a(2) = s1 - a(5) - a( 9) - a(14) a(3) = s1 - a(6) - a(10) - a(15) a(4) = s1 - a(7) - a(11) - a(16)
which are the defining equations for the Right to Left Bent Diagonals. Consequently the resulting Magic Square is Two Way Bent Diagonal.
A routine can be written to generate subject Magic Squares of order 4 (ref. BentDia41).
Note
19.3 Magic Squares (5 x 5) When the equations defining the Left to Right Bent Diagonals of a fifth order Magic Square: a(1) + a( 7) + a(13) + a(17) + a(21) = s1 a(2) + a( 8) + a(14) + a(18) + a(22) = s1 a(3) + a( 9) + a(15) + a(19) + a(23) = s1 a(4) + a(10) + a(11) + a(20) + a(24) = s1 a(5) + a( 6) + a(12) + a(16) + a(25) = s1 are added to the equations describing a Simple Magic Square of the fifth order, the resulting One Way Bent Diagonal Magic Square is described by following equations: a( 1) = s1 - a( 7) - a(13) - a(19) - a(25) a(17) = s1 - a(21) - a(13) - a( 7) - a( 1) a( 9) = 0.2 * s1 - a(17) - 0.5 * a(21) + 0.5 * a(1) + a(25) a( 5) = -0.4 * s1 + a( 9) + a(17) + a( 7) + a(19) - a(25) a(12) = -0.2 * s1 + a(21) + a( 1) a(11) = -0.6 * s1 + a( 9) + a(17) + a( 7) + a(19) a(23) = s1 - a(19) - a(15) - a( 9) - a( 3) a(14) = 0.8 * s1 - a(15) - a( 9) - a(19) a(18) = - a( 8) + a(15) + a( 9) - a(13) + a(19) a(22) = 0.2 * s1 - a( 2) + a(13) a( 4) = 0.4 * s1 - a( 2) - a( 3) - a( 9) + a(21) + a(13) - a(19) + a(25) a(24) = -0.2 * s1 + a( 2) + a(15) + a( 3) + a( 9) - a(21) - a(13) + a(19) - a(25) a(20) = 1.4 * s1 - a(10) - a(15) - a( 9) - a(17) - a( 7) - a(19) a(16) = -0.4 * s1 + a(10) + a( 8) + a( 7) + a(13) - a(19) a( 6) = s1 - a(10) - a( 8) - a( 9) - a( 7)
The solutions can be obtained by guessing the 10 parameters:
A routine can be written to generate subject Magic Squares of order 5 (ref. BentDia51).
Notes
Comparable routines as deducted above can be written to generate Prime Number One and Two Way Bent Diagonal Magic Squares of order 6.
19.4.3 Two Way Bent Diagonal
Axial Symmetry Magic Squares are - per definition - Two Way Bent Diagonal.
a(31) = s1 - a(32) - a(33) - a(34) - a(35) - a(36) a(25) = s1 - a(26) - a(27) - a(28) - a(29) - a(30) a(24) = - s1/2 + a(26) + a(27) + a(28) + a(33) a(23) = s1/2 - a(28) - a(29) - a(30) + a(32) a(22) = 3*s1/2 - a(27) - a(28) - a(29) - a(32) - a(33) - a(34) - a(35) - a(36) a(21) = s1/2 - a(26) - a(27) - a(28) + a(36) a(20) = - s1/2 + a(28) + a(29) + a(30) + a(35) a(19) = - s1/2 + a(27) + a(28) + a(29) + a(34)
The solutions can be obtained by guessing the 10 parameters:
A routine can be written to generate subject Magic Squares of order 6 (ref. BentDia65).
19.4.4 One Way Bent Diagonal When the equations defining the Left to Right Bent Diagonals of a sixth order Magic Square: a(1) + a( 8) + a(15) + a(21) + a(26) + a(31) = s1 a(2) + a( 9) + a(16) + a(22) + a(27) + a(32) = s1 a(3) + a(10) + a(17) + a(23) + a(28) + a(33) = s1 a(4) + a(11) + a(18) + a(24) + a(29) + a(34) = s1 a(5) + a(12) + a(13) + a(19) + a(30) + a(35) = s1 a(6) + a( 7) + a(14) + a(20) + a(25) + a(36) = s1 are added to the equations describing a Rectangular Compact Magic Square of the sixth order (ref. Section 6.10), the resulting One Way Bent Diagonal Magic Square is described by following equations: a(31) = s1 - a(32) - a(33) - a(34) - a(35) - a(36) a(28) = s1 - a(29) - a(30) - a(34) - a(35) - a(36) a(27) = a(30) - a(33) + a(36) a(26) = a(29) - a(32) + a(35) a(25) = - a(29) - a(30) + a(32) + a(33) + a(34) a(23) = - s1 - 2 * a(24) + 2 * a(32) + 2 * a(34) + a(35) + 4 * a(36) a(22) = s1 + a(24) - 2 * a(32) - a(34) - 3 * a(36) a(21) = a(24) + a(33) - a(36) a(20) = - s1 - 2 * a(24) + 3 * a(32) + 2 * a(34) + 4 * a(36) a(19) = 2*s1 + a(24) - 3 * a(32) - a(33) - 3 * a(34) - a(35) - 4 * a(36) a(17) = 5*s1/3 - a(18) + a(24) - 2 * a(32) - 2 * a(34) - a(35) - 4 * a(36) a(15) = a(18) - a(33) + a(36) a(14) = 5*s1/3 - a(18) + a(24) - 3 * a(32) - 2 * a(34) - 4 * a(36) a(12) = 2*s1/3 - a(18) - a(24) - a(30) a(10) = - s1 + a(18) + a(24) + a(29) + a(30) + a(34) + a(35) + a(36) a( 9) = 2*s1/3 - a(18) - a(24) - a(30) + a(33) - a(36) a( 7) = a(18) + a(24) + a(29) + a(30) - a(32) - a(33) - a(34) a( 5) = a(18) + a(24) - a(35) a( 4) = 2*s1/3 - a(18) - a(24) - a(34) a( 2) = a(18) + a(24) - a(32) a( 1) = - s1/3 - a(18) - a(24) + a(32) + a(33) + a(34) + a(35) + a(36)
The consequential symmetry is worth to be noticed and results in 2 additional Bent Diagonals from Right to Left, as:
A routine can be written to generate subject Magic Squares of order 6 (ref. BentDia63).
19.4.5 Two Way Bent Diagonal When the equations defining the Right to Left Bent Diagonals of a sixth order Magic Square: a(6) + a(11) + a(16) + a(22) + a(29) + a(36) = s1 a(5) + a(10) + a(15) + a(21) + a(28) + a(35) = s1 a(4) + a( 9) + a(14) + a(20) + a(27) + a(34) = s1 a(3) + a( 8) + a(13) + a(19) + a(26) + a(33) = s1 a(2) + a( 7) + a(18) + a(24) + a(25) + a(32) = s1 a(1) + a(12) + a(17) + a(23) + a(30) + a(31) = s1 are added to the equations describing a One Way Bent Diagonal Rectangular Compact Magic Square of the sixth order, as deducted in previous section, the resulting Two Way Bent Diagonal Magic Square is described by following equations: a(31) = s1 - a(32) - a(33) - a(34) - a(35) - a(36) a(28) = s1 - a(29) - a(30) - a(34) - a(35) - a(36) a(27) = a(30) - a(33) + a(36) a(26) = a(29) - a(32) + a(35) a(25) = - a(29) - a(30) + a(32) + a(33) + a(34) a(23) = - s1 - 2 * a(24) + 2 * a(32) + 2 * a(34) + a(35) + 4 * a(36) a(22) = s1 + a(24) - 2 * a(32) - a(34) - 3 * a(36) a(21) = a(24) + a(33) - a(36) a(20) = - s1 - 2 * a(24) + 3 * a(32) + 2 * a(34) + 4 * a(36) a(19) = 2*s1 + a(24) - 3 * a(32) - a(33) - 3 * a(34) - a(35) - 4 * a(36)
The consequential symmetry (Axial Symmetrical) is worth to be noticed.
A routine can be written to generate subject Magic Squares of order 6 (ref. BentDia64).
19.6.1 Two Way Bent Diagonal Based on the equations defining seventh order Two Way Bent Diagonal Ultra Magic Squares: a(43) = s1 - a(44) - a(45) - a(46) - a(47) - a(48) - a(49) a(39) = 2*s1 - 2*a(40) - 2*a(41) - 2*a(42) + 2*a(44) + a(45) - a(46) - 3*a(47) - 4*a(48) - 2*a(49) a(38) = a(40) - a(44) - a(45) + a(47) + a(48) a(37) = - s1 + a(41) + a(46) + 2*a(47) + 2*a(48) + 2*a(49) a(36) = a(42) - a(44) + a(48) a(35) = 6*s1/7 - a(41) - a(42) - a(47) - a(48) - a(49) a(34) = - s1/7 - a(40) - a(42) + a(44) + a(45) + a(47) + a(49) a(33) = - 8*s1/7 + 2*a(40) + a(41) + 2*a(42) - 2*a(44) - 2*a(45) + a(46) + 2*a(47) + 4*a(48) + a(49) a(32) = 6*s1/7 - 2*a(40) + a(45) - a(46) - a(47) - 2*a(48) a(31) = - 8*s1/7 + 2*a(40) + a(41) + 2*a(42) - a(44) - a(45) + a(46) + a(47) + 3*a(48) + a(49) a(30) = 6*s1/7 - a(40) - a(42) + a(44) + a(45) - a(46) - a(47) - 2*a(48) - a(49) a(29) = 6*s1/7 - a(41) - a(42) + a(44) - a(47) - 2*a(48) - a(49) a(28) = 8*s1/7 - a(44) - a(45) - a(46) - a(47) - a(48) - 2*a(49) a(27) = s1/7 + a(44) - a(48) a(26) = s1/7 + a(45) - a(47) a(25) = s1/7
a routine can be written to generate subject Magic Squares of order 7 (ref. BentDia72).
19.6.2 Four Way Bent Diagonal Based on the equations defining seventh order Four Way Bent Diagonal Magic Squares, with Symmetrical Axes and Main Diagonals: a(44) = 4*s1/7 - a(45) - a(47) - a(48) a(43) = 3*s1/7 - a(46) - a(49) a(39) = 3*s1/7 - a(45) - a(47) a(37) = 4*s1/7 - a(38) - a(40) - a(41) a(36) = - a(42) + a(45) + a(47) a(33) = 3*s1/7 - a(41) - a(49) a(32) = 2*s1/7 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = -4*s1/7 + a(38) + a(40) + a(41) + a(46) + a(49) a(30) = 5*s1/7 - a(34) - a(38) - a(40) - a(46) a(29) = s1/7 - a(35) + a(38) + a(40) - a(45) + a(46) - a(47) a(28) = 4*s1/7 - a(46) - 2 * a(49) a(26) = -5*s1/7 - a(27) + a(38) + a(40) + 2 * a(41) + a(46) + 2 * a(49) a(25) = s1/7 a(21) = 3*s1/7 - a(27) - a(35) a(20) = 6*s1/7 - a(34) - a(38) - a(40) - 2 * a(41) a(16) = - s1 + a(34) + 2 * a(38) + 2 * a(40) + 2 * a(41) + a(46) a(15) = a(27) + a(35) - a(38) - a(40) + a(45) - a(46) + a(47) a(14) = s1/7 + a(27) - a(42) a(12) = -5*s1/7 + a(38) + 2 * a(41) + a(46) + 2 * a(49) a(10) = 9*s1/7 - 2 * a(38) - a(40) - 2 * a(41) - a(46) - 2 * a(49) a( 8) = 3*s1/7 - a(27) + a(42) - a(45) - a(47) a( 6) = 3*s1/7 - a(27) - a(48) a( 5) = 8*s1/7 + a(27) - a(38) - a(40) - 2 * a(41) - a(46) - a(47) - 2 * a(49) a( 3) = -4*s1/7 - a(27) + a(38) + a(40) + 2 * a(41) - a(45) + a(46) + 2 * a(49) a( 2) = s1/7 + a(27) - a(44)
a routine can be written to generate subject Magic Squares of order 7 (ref. BentDia71).
Consequential properties resulting from the defining properties of 7th order Four Way Bent Diagonal Magic Squares
are summarised and illustrated in Attachment 19.6.3.
19.7 Magic Squares (8 x 8)
Order 8 Four Way Bent Diagonal (Semi) Magic Squares (Franklin Squares) have been discussed in detail in Section 14.6.16.
The obtained results regarding the miscellaneous types of Bent Diagonal Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Order
Characteristics
Subroutine
Results
4
Two Way Bent Diagonal
5
One Way Bent Diagonal
6
Two Way Bent Diagonal, Axial Symmetric
One Way Bent Diagonal, Rect Compact
Two Way Bent Diagonal, Rect Compact
7
Two Way Bent Diagonal, Ultra Magic
Symmetrical Axes and Main Diagonals
Comparable routines as listed above, can be used to generate Prime Number Magic Squares with Diamond Inlays, which will be described in following sections.
|
![]() ![]() |
Index | About the Author |