Office Applications and Entertainment, Magic Squares of Subtraction | ||
Index | About the Author |
The "quadrata subtractionis" were published by Adam Kochanski (Poland) in 1686.
2.0 Definition and Terminology
A Magic Square of Subtraction of order n is an arrangement of n2 numbers, usually distinct integers, in a square, such that the n numbers in all rows, columns and diagonals have the same residuum.
4.0 Squares of Subtraction (4 x 4)
The number of magic series for order 4 (Additive) Magic Squares (s4 = 34) is 86. The frequency (n4) of the occurring residuum values for these magic series is shown below.
Although for the majority of the occurring residuum values n4 > 10, no (Additive) Magic Squares can be found which are also Squares of Subtraction.
5.0 Squares of Subtraction (5 x 5)
The number of magic series for order 5 (Additive) Magic Squares (s5 = 65) is 1394. The frequency (n5) of the occurring residuum values for these magic series is shown below.
Although for the majority of the occurring residuum values n5 > 12, no (Additive) Magic Squares can be found which are also Squares of Subtraction.
6.0 Squares of Subtraction (6 x 6)
The number of magic series for order 6 (Additive) Magic Squares (s6 = 111) is 32134.
Walter Trump selected from these magic series 2025 suitable series with Residuum 15.
Alternatively subject squares can be constructed with following procedure:
The procedure described above is illustrated below for the first occurring Semi Magic Square based on the third occurring Generator. |
Generator
1 4 17 24 30 35 2 5 18 22 28 36 3 7 16 23 29 33 6 9 15 20 27 34 8 12 14 19 26 32 10 11 13 21 25 31 Semi Magic Square
1 28 29 9 19 25 4 2 33 15 26 31 17 36 7 27 14 10 24 18 16 34 8 11 30 5 23 20 12 21 35 22 3 6 32 13 Simple Magic Square
1 19 9 25 28 29 4 26 15 31 2 33 24 8 34 11 18 16 30 12 20 21 5 23 35 32 6 13 22 3 17 14 27 10 36 7
and is a variation on the methods used by e.g. Achille Rilly (1901) for the construction of Bimagic Squares of order 8 based on limited amounts of Bimagic Series
(ref. Section 15.3.1).
6.2 Half Generator Method (6 x 6)
Based on the sub collection of complement free magic series (1280 ea), 115 complement free Generators with 3 magic rows (s6 = 111, Res6 = 15) can be obtained,
which can be completed with their complements (blue).
|
Generator
1 4 19 24 28 35 3 10 15 21 30 32 6 11 17 23 25 29 36 33 18 13 9 2 34 27 22 16 7 5 31 26 20 14 12 8 Semi Magic Square
1 32 29 2 16 31 4 30 11 18 34 14 19 3 23 33 7 26 24 10 25 13 27 12 28 15 17 9 22 20 35 21 6 36 5 8 Simple Magic Square
16 32 1 2 29 31 34 30 4 18 11 14 27 10 24 13 25 12 22 15 28 9 17 20 5 21 35 36 6 8 7 3 19 33 23 26
Based on the collection of 115 completed Generators, 244 essential different (Additive) Magic Squares could be obtained with procedure
CnstrSqrs6.
Attachment 6.3 shows
a few Simple Magic Squares of Subtraction with s6 = 111 and different residuum values,
which could be obtained with the Half Generator Method described in Section 6.2 above.
7.0 Squares of Subtraction (7 x 7)
For order 7 (Additive) Magic Squares (s7 = 175), 55534 complement free magic series with Residuum 25 can be found.
The procedure described above is illustrated below for the first Semi Magic Square which returned an (Almost Associated) Simple Magic Square, based on the first occurring Generator. |
Generator
1 2 7 27 45 46 47 6 8 15 28 38 39 41 10 13 24 29 30 33 36 49 48 43 23 5 4 3 44 42 35 22 12 11 9 40 37 26 21 20 17 14 16 18 19 25 31 32 34 Semi Magic Square
1 6 10 49 44 40 25 2 41 30 4 42 37 19 7 39 36 5 35 21 32 27 38 33 23 12 26 16 45 15 29 43 11 14 18 46 8 13 48 9 20 31 47 28 24 3 22 17 34 Simple Magic Square
41 4 37 19 30 2 42 39 5 21 32 36 7 35 38 23 26 16 33 27 12 6 49 40 25 10 1 44 28 3 17 34 24 47 22 15 43 14 18 29 45 11 8 48 20 31 13 46 9
Notes
7.2 Inlaid Magic Squares of Subtraction (7 x 7)
The collection of Associated Squares of Subtraction contains some interesting sub-collections of which a few examples are shown below: |
Square Inlays
49 6 17 47 5 22 29 40 42 2 7 12 26 46 16 39 18 13 30 23 36 31 9 35 25 15 41 19 14 27 20 37 32 11 34 4 24 38 43 48 8 10 21 28 45 3 33 44 1 Diamond Inlays
28 17 40 4 44 7 35 12 37 29 14 48 9 26 8 18 45 19 27 47 11 49 16 30 25 20 34 1 39 3 23 31 5 32 42 24 41 2 36 21 13 38 15 43 6 46 10 33 22 Overl Sub Squares
43 22 5 30 40 3 32 11 17 31 41 27 34 14 44 37 15 4 8 38 29 2 24 49 25 1 26 48 21 12 42 46 35 13 6 36 16 23 9 19 33 39 18 47 10 20 45 28 7
Attachment 7.2
shows miscellaneous Associated Magic Squares of Subtraction with Square Inlays
(s3 = 75, s4 = 100),
as generated with routine SqrInlay7.
8.0 Squares of Subtraction (8 x 8)
For order 8 (Additive) Magic Squares (s8 = 260), 3888 complement free Magic Euler Series with Residuum 32 can be found.
The procedure described above is illustrated below for the first Semi Magic Square which returned a Simple Magic Square, based on the first occurring Generator. |
Generator
1 10 19 28 38 45 56 63 3 12 17 26 40 47 54 61 5 14 23 32 34 41 52 59 7 16 21 30 36 43 50 57 64 55 46 37 27 20 9 2 62 53 48 39 25 18 11 4 60 51 42 33 31 24 13 6 58 49 44 35 29 22 15 8 Semi Magic Square
1 3 5 21 64 48 60 58 10 12 14 30 55 62 42 35 19 17 23 57 46 25 24 49 28 40 34 43 9 53 31 22 38 26 32 36 37 11 51 29 45 47 52 16 20 39 33 8 56 54 41 50 27 4 13 15 63 61 59 7 2 18 6 44 Simple Magic Square
48 1 21 64 3 58 5 60 62 10 30 55 12 35 14 42 11 38 36 37 26 29 32 51 4 56 50 27 54 15 41 13 18 63 7 2 61 44 59 6 53 28 43 9 40 22 34 31 25 19 57 46 17 49 23 24 39 45 16 20 47 8 52 33
Note Order 8 Magic Squares which are also Squares of Subtraction, can be constructed with the Medjig Construction Method, as described in detail in Section 8.3.1 and illustrated below (s8 = 260, Res8 = 32): |
B (4 x 4)
12 13 3 6 7 2 16 9 14 11 5 4 1 8 10 15 A Medjig Square (4 x 4)
3 1 1 3 0 1 1 2 0 2 2 0 3 2 0 3 1 2 0 3 1 3 0 2 0 3 1 2 0 2 3 1 0 1 2 3 0 1 3 2 3 2 1 0 3 2 1 0 2 0 2 0 2 1 3 2 3 1 3 1 3 0 1 0 C Magic Square (8 x 8)
60 28 29 61 3 19 22 38 12 44 45 13 51 35 6 54 23 39 2 50 32 64 9 41 7 55 18 34 16 48 57 25 14 30 43 59 5 21 52 36 62 46 27 11 53 37 20 4 33 1 40 8 42 26 63 47 49 17 56 24 58 10 31 15
Attachment 8.7
shows miscellaneous (Medjig Method Based) Simple Magic Squares of Subtraction,
as generated with routine MgcSqr8e.
Attachment 8.8
shows miscellaneous (Medjig Method Based) Associated Magic Squares of Subtraction,
as generated with routine MgcSqr8a1.
Attachment 8.9
shows miscellaneous (Medjig Method Based) Pan Magic and Complete Squares of Subtraction,
as generated with routine MgcSqr8b1.
8.3 Pan Magic Squares of Subtraction (8 x 8)
The collection of Pan Magic Squares of Subtraction (s8 = 260, Res8 = 16) contains some interesting sub-collections of which a few examples are shown below: |
PM, Composed
25 32 34 39 21 20 46 43 36 37 27 30 42 47 17 24 31 26 40 33 19 22 44 45 38 35 29 28 48 41 23 18 10 15 49 56 6 3 61 60 51 54 12 13 57 64 2 7 16 9 55 50 4 5 59 62 53 52 14 11 63 58 8 1 PM, Inlaid
25 21 32 20 34 46 39 43 10 6 15 3 49 61 56 60 36 42 37 47 27 17 30 24 51 57 54 64 12 2 13 7 31 19 26 22 40 44 33 45 16 4 9 5 55 59 50 62 38 48 35 41 29 23 28 18 53 63 52 58 14 8 11 1 PM, Associated
64 19 38 9 15 36 21 58 2 45 28 55 49 30 43 8 51 32 41 6 4 47 26 53 13 34 23 60 62 17 40 11 54 25 48 3 5 42 31 52 12 39 18 61 59 24 33 14 57 22 35 16 10 37 20 63 7 44 29 50 56 27 46 1
Attachment 8.4
shows miscellaneous Pan Magic Squares of Subtraction composed of Pan Magic Sub Squares
(s4 = 130),
as generated with routine MgcSqr8b.
The routines applied above for Pan Magic Squares of Subtraction have been adopted from comparable routines for (Additive) Pan Magic Squares as deducted in
Section 8.2.1 and
Section 8.6.8.
8.4 Bimagic Squares of Subtraction (8 x 8)
The 136244 Essential Different Bimagic Squares of order eight, as published by Walter Trump and Francis Gaspalou (April 2014), can be stored in an Excel Workbook.
Attachment 8.3 shows
a few Magic Squares of Subtraction with s8 = 260 and different residuum values,
which could be obtained with the methods described above.
9.0 Squares of Subtraction (9 x 9)
Euler Series
The number of magic series for order 9 (Additive) Magic Squares (s9 = 369) with Residuum 41 would be inconvenient high.
A more controllable collection can be obtained by limiting the collection to complement free Euler Series.
Subject procedure is illustrated below for the first occurring Semi Magic Square based on the first occurring (completed) Generator. |
Generator
1 11 21 31 42 50 62 72 79 2 12 22 34 44 54 59 64 78 5 15 25 35 37 49 63 65 75 6 13 27 30 43 53 56 68 73 81 71 61 51 40 32 20 10 3 80 70 60 48 38 28 23 18 4 77 67 57 47 45 33 19 17 7 76 69 55 52 39 29 26 14 9 8 16 24 36 41 46 58 66 74 Semi Magic Square
1 2 5 6 81 80 77 76 41 11 12 15 30 51 70 67 55 58 21 22 25 43 71 28 33 52 74 31 34 35 13 61 23 57 69 46 42 44 37 73 3 48 47 9 66 50 59 63 56 32 60 19 14 16 62 78 49 68 40 18 7 39 8 72 64 75 27 20 4 45 26 36 79 54 65 53 10 38 17 29 24 Simple Magic Square
1 2 77 5 80 76 81 41 6 11 12 67 15 70 55 51 58 30 21 22 33 25 28 52 71 74 43 72 64 45 75 4 26 20 36 27 50 59 19 63 60 14 32 16 56 79 54 17 65 38 29 10 24 53 62 78 7 49 18 39 40 8 68 31 34 57 35 23 69 61 46 13 42 44 47 37 48 9 3 66 73
Note
Bimagic Euler Series
The collection of 19688 magic series described in Section 9.1 above contains a sub collection of 864 complement free bimagic series, which allows for the construction method
described in Section 9.1 above.
|
Generator
9 10 20 32 43 53 57 69 76 8 11 19 36 40 51 61 66 77 7 12 24 35 38 49 55 68 81 4 15 26 30 37 54 59 65 79 73 72 62 50 39 29 25 13 6 74 71 63 46 42 31 21 16 5 75 70 58 47 44 33 27 14 1 78 67 56 52 45 28 23 17 3 2 18 22 34 41 48 60 64 80 Semi Magic Square
9 8 7 4 73 74 75 78 41 10 11 12 26 72 71 47 56 64 20 19 24 15 62 63 58 28 80 32 36 35 37 50 42 44 45 48 43 40 38 65 13 46 70 52 2 53 51 55 30 25 21 33 67 34 57 66 81 54 29 16 27 17 22 69 61 68 79 39 31 1 3 18 76 77 49 59 6 5 14 23 60 Simple Magic Square
9 8 4 7 41 78 73 75 74 10 11 26 12 64 56 72 47 71 43 40 65 38 2 52 13 70 46 76 77 59 49 60 23 6 14 5 57 66 54 81 22 17 29 27 16 53 51 30 55 34 67 25 33 21 69 61 79 68 18 3 39 1 31 32 36 37 35 48 45 50 44 42 20 19 15 24 80 28 62 58 63
Square Inlays
25 67 50 17 33 16 46 64 51 73 81 71 74 14 5 34 4 13 55 62 35 29 19 28 56 45 40 12 3 23 6 38 75 60 80 72 52 21 58 39 41 43 24 61 30 10 2 22 7 44 76 59 79 70 42 37 26 54 63 53 47 20 27 69 78 48 77 68 8 11 1 9 31 18 36 66 49 65 32 15 57 Diamond Inlays
20 76 72 46 21 42 26 50 16 8 4 60 25 71 73 64 12 52 58 44 75 23 5 33 63 54 14 48 15 17 79 37 27 31 35 80 69 53 1 43 41 39 81 29 13 2 47 51 55 45 3 65 67 34 68 28 19 49 77 59 7 38 24 30 70 18 9 11 57 22 78 74 66 32 56 40 61 36 10 6 62 Overl Sub squares
3 62 64 35 52 13 77 44 19 51 66 33 14 80 36 23 57 9 71 21 7 65 28 53 12 72 40 39 15 60 50 4 76 45 24 56 1 74 34 55 41 27 48 8 81 26 58 37 6 78 32 22 67 43 42 10 70 29 54 17 75 61 11 73 25 59 46 2 68 49 16 31 63 38 5 69 30 47 18 20 79
Attachment 9.2
shows miscellaneous Associated Magic Squares of Subtraction with Square Inlays
(s4 = 164, s5 = 205),
obtained by means of transformation of order 9 Composed Semi Magic Squares of Subtraction
(ref. SqrInlay9).
10.0 Squares of Subtraction (10 x 10)
10.1 Generator Method (10 x 10)
The number of complement free Euler Series for order 10 (Additive) Magic Squares (s10 = 505) with Residuum 49 would be inconvenient high.
Subject procedure is illustrated below for one of the Generators and resulting Semi- and Simple Magic Square. |
Generator
37 12 56 6 80 30 99 24 93 68 87 62 81 31 55 5 74 49 43 18 54 29 73 23 67 42 61 11 85 60 79 4 98 48 92 17 86 36 35 10 91 16 65 15 59 34 53 3 97 72 66 41 90 40 84 9 78 28 47 22 33 8 77 2 71 21 95 45 89 64 83 58 52 27 96 46 70 20 39 14 75 25 44 19 63 13 82 57 76 51 100 50 94 69 88 38 32 7 26 1 Semi Magic Square
37 12 56 6 80 30 99 24 68 93 87 62 81 31 55 5 74 18 49 43 54 29 73 23 67 42 61 60 85 11 79 4 98 48 92 17 86 36 10 35 91 16 65 15 59 53 3 97 72 34 41 90 84 66 9 78 40 28 47 22 33 89 8 95 71 77 21 64 45 2 20 58 14 70 46 27 39 83 52 96 13 57 25 82 19 76 44 63 51 75 50 88 1 69 7 100 38 32 26 94 Simple Magic Square
37 12 68 93 56 80 6 30 24 99 87 62 49 43 81 55 31 5 18 74 54 29 85 11 73 67 23 42 60 61 79 4 10 35 98 92 48 17 36 86 50 88 26 94 1 7 69 100 32 38 20 58 52 96 14 46 70 27 83 39 13 57 51 75 25 19 82 76 63 44 91 16 72 34 65 59 15 53 97 3 33 89 45 2 8 71 95 77 64 21 41 90 47 22 84 9 66 78 28 40
Notes
10.2 Half Generator Method (10 x 10)
Based on a sub collection of 1766 complement free magic series, 379 complement free Generators with 5 magic rows (s10 = 505, Res10 = 49) could be obtained,
which can be completed with their complements (blue).
|
Generator
1 14 33 45 47 51 64 72 83 95 2 10 23 36 48 60 69 77 86 94 3 16 28 40 49 57 66 74 82 90 4 12 25 31 43 62 75 79 81 93 13 21 30 34 38 42 55 84 92 96 100 87 68 56 54 50 37 29 18 6 99 91 78 65 53 41 32 24 15 7 98 85 73 61 52 44 35 27 19 11 97 89 76 70 58 39 26 22 20 8 88 80 71 67 63 59 46 17 9 5 Semi Magic Square
1 14 33 45 47 51 64 72 83 95 2 10 23 36 48 60 69 77 94 86 3 16 28 40 49 57 66 82 74 90 4 12 25 31 43 62 75 81 79 93 42 30 84 92 96 55 21 38 13 34 100 87 68 56 54 29 50 37 18 6 91 99 78 53 24 41 15 32 7 65 85 98 73 61 27 44 35 11 52 19 97 76 26 20 58 89 22 70 39 8 80 63 67 71 59 17 88 5 46 9 Simple Magic Square
1 14 45 47 64 72 95 51 83 33 91 99 53 24 15 32 65 41 7 78 97 76 20 58 22 70 8 89 39 26 80 63 71 59 88 5 9 17 46 67 3 16 40 49 66 82 90 57 74 28 100 87 56 54 50 37 6 29 18 68 4 12 31 43 75 81 93 62 79 25 42 30 92 96 21 38 34 55 13 84 85 98 61 27 35 11 19 44 52 73 2 10 36 48 69 77 86 60 94 23
Based on the collection of 379 completed Generators, numerous essential different Magic Squares of Subtraction can be obtained with procedure
CnstrSqrs10b.
Attachment 10.3 shows
a few Magic Squares of Subtraction with s10 = 505 and different residuum values,
which could be obtained with the methods described above.
|
Index | About the Author |