Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
14.0 Special Magic Squares, Prime Numbers
14.11 Magic Squares, Higher Order, Composed
14.11.1 Semi Magic Sub Squares (3 x 3)
In Section 14.4.10 was discussed how Prime Number Magic Squares of order 6 - with Magic Sum 2 * s1 - can be composed out of 3th order Prime Number Semi Magic Squares with Magic Sum s1.
Next sections show sets of Prime Number Semi Magic Squares of the 3th order, enabling the construction of
9th,
12th,
15th and
18th order Magic Squares.
An example of a Magic Sum for which the required set of 1 Prime Number Magic Center Square and 8 Prime Number Semi Magic Squares can be found is 22947:
The 8 border squares can be arranged in 8! ways around the center square, resulting in 8! * 8 * 124 * 244 = 2,22 1015 Magic Squares of the 9th order with Magic Sum 68841.
14.11.3 Magic Squares (12 x 12)
An example of a Magic Sum for which a set of 16 Prime Number Semi Magic Squares can be found is 16443:
These 16 squares can be arranged in 16! ways, resulting in 16! * 128 * 248 = 9,90 1032 Magic Squares of the 12th order with Magic Sum 65772.
14.11.4 Associated Magic Squares (15 x 15)
An example of a Magic Sum for which a set of 1 Prime Number Magic Center Square and 24 Prime Number Semi Magic Squares can be found is s1 = 48561: |
16703 12821 19037 31721 9587 7253 137 26153 22271
5861 14537 28163 13577 14591 20393 29123 19433 5
8237 10691 29633 9521 20123 18917 30803 17747 11
863 22307 25391 16607 8837 23117 31091 17417 53
9677 17483 21401 16691 4967 26903 22193 26111 257
12611 7457 28493 4937 23627 19997 31013 17477 71
21347 21521 5693 26981 2963 18617 233 24077 24251
9803 13217 25541 7211 18443 22907 31547 16901 113
29027 3041 16493 2213 14747 31601 17321 30773 467
19211 1697 27653 1523 26321 20717 27827 20543 191
2837 20477 25247 16931 8627 23003 28793 19457 311
11411 10007 27143 9413 18047 21101 27737 20507 317
32027 647 15887 47 16187 32327 16487 31727 347
32057 11867 4637 11273 14327 22961 5231 22367 20963
32063 12917 3581 9371 23747 15443 7127 11897 29537
32183 11831 4547 11657 6053 30851 4721 30677 13163
31907 1601 15053 773 17627 30161 15881 29333 3347
32261 15473 827 9467 13931 25163 6833 19157 22571
8123 8297 32141 13757 29411 5393 26681 10853 11027
32303 14897 1361 12377 8747 27437 3881 24917 19763
32117 6263 10181 5471 27407 15683 10973 14891 22697
32321 14957 1283 9257 23537 15767 6983 10067 31511
32363 14627 1571 13457 12251 22853 2741 21683 24137
32369 12941 3251 11981 17783 18797 4211 17837 26513
10103 6221 32237 25121 22787 653 13337 19553 15671
The Magic Square shown above (MC = 242805) is Associated and composed of:
of order 3 with Magic Sum s1.
14.11.5 Associated Magic Squares (18 x 18)
With some minor modifications to the procedure applied in Section 14.11.9 above (Priem3f2)
a procedure can be obtained to generate Associated Composed Magic Squares of order 18 (Priem3f4).
14.11.6 Pan Magic Sub Squares (4 x 4)
In Section 14.6.1 was discussed how Prime Number Magic Squares of order 8 - with Magic Sum 2 * s1 - can be composed out of 4th order Prime Number Pan Magic Squares with Magic Sum s1.
Next sections show sets of Prime Number Pan Magic Squares of the 4th order, enabling the construction of 12th, 16th, 20th, 24th and 28th order Magic Squares.
14.11.7 Magic Squares (12 x 12)
An example of a Magic Sum for which a set of 9 Prime Number Pan Magic Squares can be found is 4620:
These 9 squares can be arranged in 9! ways, resulting in 9! * 3849 = 6,6 1028 Magic Squares of the 12th order
with Magic Sum 13860.
14.11.8 Magic Squares (16 x 16)
An example of a Magic Sum for which a set of 16 Prime Number Pan Magic Squares can be found is 7980:
These 16 squares can be arranged in 16! ways, resulting in 16! * 38416 = 4,7 1054 Magic Squares of the 16th order
with Magic Sum 31920.
14.11.9 Magic Squares (20 x 20)
An example of a Magic Sum for which a set of 25 Prime Number Pan Magic Squares can be found is 13440: |
139 101 6563 6637 6491 6709 67 173 157 83 6581 6619 6653 6547 229 11
61 353 6353 6673 6323 6703 31 383 367 47 6659 6367 6689 6337 397 17
491 457 6043 6449 5791 6701 239 709 677 271 6229 6263 6481 6011 929 19
251 419 6217 6553 6079 6691 113 557 503 167 6469 6301 6607 6163 641 29
587 691 5801 6361 5483 6679 269 1009 919 359 6133 6029 6451 5711 1237 41
653 607 5981 6199 5519 6661 191 1069 739 521 6067 6113 6529 5651 1201 59
577 1019 5557 6287 5273 6571 293 1303 1163 433 6143 5701 6427 5417 1447 149
733 569 5881 6257 5569 6569 421 881 839 463 5987 6151 6299 5839 1151 151
823 977 5443 6197 5119 6521 499 1301 1277 523 5897 5743 6221 5419 1601 199
971 1459 4973 6037 4621 6389 619 1811 1747 683 5749 5261 6101 4909 2099 331
1097 1249 5171 5923 4721 6373 647 1699 1549 797 5623 5471 6073 5021 1999 347
1327 1439 4831 5843 4363 6311 859 1907 1889 877 5393 5281 5861 4813 2357 409
1423 1523 4967 5527 4217 6277 673 2273 1753 1193 5297 5197 6047 4447 2503 443
1697 1373 4933 5437 4099 6271 863 2207 1787 1283 5023 5347 5857 4513 2621 449
1997 1531 4481 5431 3701 6211 1217 2311 2239 1289 4723 5189 5503 4409 3019 509
937 2153 4483 5867 4177 6173 631 2459 2237 853 5783 4567 6089 4261 2543 547
1801 2129 4283 5227 3389 6121 907 3023 2437 1493 4919 4591 5813 3697 3331 599
1831 2381 4297 4931 3449 5779 983 3229 2423 1789 4889 4339 5737 3491 3271 941
2203 2081 4057 5099 3467 5689 1613 2671 2663 1621 4517 4639 5107 4049 3253 1031
1619 2791 3917 5113 3361 5669 1063 3347 2803 1607 5101 3929 5657 3373 3359 1051
1567 2447 4027 5399 3767 5659 1307 2707 2693 1321 5153 4273 5413 4013 2953 1061
2857 2467 3533 4583 2609 5507 1933 3391 3187 2137 3863 4253 4787 3329 4111 1213
2477 2383 3943 4637 3529 5051 2063 2797 2777 2083 4243 4337 4657 3923 3191 1669
1987 3203 3461 4789 3251 4999 1777 3413 3259 1931 4733 3517 4943 3307 3469 1721
2789 2887 3637 4127 3061 4703 2213 3463 3083 2593 3931 3833 4507 3257 3659 2017
These 25 squares can be arranged in 25! ways, resulting in 25! * 38425 = 6,3 1089 Magic Squares of the 20th order
with Magic Sum 67200.
14.11.10 Magic Squares (24 x 24)
An example of a Magic Sum for which a set of 36 Prime Number Pan Magic Squares can be found is 21420 (ref. Attachment 14.7.5).
These 36 squares can be arranged in 36! ways, resulting in 36! * 38436 = 4,04 10134 Magic Squares of the 24th order
with Magic Sum 128520.
14.11.11 Magic Squares (28 x 28)
An example of a Magic Sum for which a set of 49 Prime Number Pan Magic Squares can be found is 27720 (ref. Attachment 14.7.6).
These 49 squares can be arranged in 49! ways, resulting in 49! * 38449 = 2,608 10189 Magic Squares of the 28th order
with Magic Sum 194040.
14.11.12 Pan Magic Sub Squares (5 x 5)
In Section 14.8.14 was discussed how Prime Number Magic Squares of order 10 - with Magic Sum 2 * s1 - can be composed out of 5th order Prime Number Pan Magic Squares with Magic Sum s1.
Next sections show sets of Prime Number Pan Magic Squares of the 5th order, enabling the construction of 15th and 20th order Magic Squares.
14.11.13 Magic Squares (15 x 15)
An example of a Magic Sum for which a set of 9 Prime Number Pan Magic Squares can be found is MC5 = 13125:
These 9 squares can be arranged in 9! ways, resulting in 9! * 288009 = 4,95 1045 Magic Squares of the 15th order with Magic Sum Mc15 = 39375.
14.11.14 Magic Squares (20 x 20)
An example of a Magic Sum for which a set of 16 Prime Number Pan Magic Squares can be found is Mc5 = 14175:
These 16 squares can be arranged in 16! ways, resulting in 16! * 2880016 = 4,687 1084 Magic Squares of the 20th order with Magic Sum MC20 = 56700.
as illustrated in Attachment 14.11.14.
14.11.15 Associated Magic Squares (15 x 15)
Associated Magic Squares of order 15 can be composed out of 9 Prime Number Magic Squares of order 5 as illustrated below: |
9173 27059 27893 1721 34259 20639 14633 3911 22853 38069 28631 22811 23981 24083 599 25229 2579 31079 33179 8039 16433 33023 13241 18269 19139
28493 38861 14969 1811 15971 29873 2789 6959 27791 32693 1709 20063 26141 39953 12239 36821 26993 13313 13229 9749 3209 11399 38723 17321 29453
27329 32141 3881 10163 26591 8291 15671 21323 28109 26711 15761 26321 16883 6269 34871 24473 4271 20129 39761 11471 24251 21701 37889 15803 461
809 38933 293 21851 38219 33461 34961 8849 16703 6131 26183 1049 36671 13259 22943 38153 7013 32789 8501 13649 1499 18149 21503 39791 19163
40013 19559 719 28001 11813 491 27773 12503 39089 20249 11579 39779 20021 263 28463 19793 953 27539 12269 39551 28229 12041 39323 20483 29
20879 251 18539 21893 38543 26393 31541 7253 33029 1889 17099 26783 3371 38993 13859 33911 23339 31193 5081 6581 1823 18191 39749 1109 39233
39581 24239 2153 18341 15791 28571 281 19913 35771 15569 5171 33773 23159 13721 24281 13331 11933 18719 24371 31751 13451 29879 36161 7901 12713
10589 22721 1319 28643 36833 30293 26813 26729 13049 3221 27803 89 13901 19979 38333 7349 12251 33083 37253 10169 24071 38231 25073 1181 11549
20903 21773 26801 7019 23609 32003 6863 8963 37463 14813 39443 15959 16061 17231 11411 1973 17189 36131 25409 19403 5783 38321 12149 12983 30869
The Prime Number Associated Magic Square shown above (Mc15 = 300315) is composed of:
of order 5 with Magic Sum Mc5 = 100105.
14.11.16 Pan Magic Sub Squares (6 x 6)
In Section 14.32.8 was discussed how Prime Number Magic Squares of order 12 - with Magic Sum 2 * s1 - can be composed out of 6th order Prime Number Pan Magic Squares with Magic Sum s1.
Next section shows sets of Prime Number Pan Magic Squares of the 6th order, enabling the construction of 18th order Magic Squares.
14.11.17 Magic Squares (18 x 18)
An example of a Magic Sum for which a set of 9 Prime Number Pan Magic Squares can be found is MC6 = 44730: |
8867 13151 347 8291 14033 41 13241 2003 7121 14051 881 7433 257 7211 14897 23 7451 14891 6619 877 14869 6043 1759 14563 859 14029 7477 1669 12907 7789 14887 7459 19 14653 7699 13
14303 7559 503 7691 13487 1187 7883 7499 6983 14153 1901 6311 179 7307 14879 521 6977 14867 7219 1423 13723 607 7351 14407 757 13009 8599 7027 7411 7927 14389 7933 43 14731 7603 31
12451 9391 523 10253 11549 563 9721 5653 6991 11939 3467 6959 193 7321 14851 173 7349 14843 4657 3361 14347 2459 5519 14387 2971 11443 7951 5189 9257 7919 14737 7561 67 14717 7589 59
8543 10151 3671 12157 6691 3517 13331 5171 3863 9007 9337 4021 491 7043 14831 1201 6337 14827 2753 8219 11393 6367 4759 11239 5903 5573 10889 1579 9739 11047 13709 8573 83 14419 7867 79
11701 10453 211 8693 12641 1031 10513 4519 7333 13313 2531 6521 151 7393 14821 359 7193 14813 6217 2269 13879 3209 4457 14699 1597 12379 8389 4397 10391 7577 14551 7717 97 14759 7517 89
14629 6247 1489 7853 10853 3659 7237 9049 6079 14159 4283 3923 499 7069 14797 353 7229 14783 7057 4057 11251 281 8663 13421 751 10627 10987 7673 5861 8831 14557 7681 127 14411 7841 113
9601 11551 1213 9161 10343 2861 11941 4051 6373 11831 5801 4733 823 6763 14779 1373 6221 14771 5749 4567 12049 5309 3359 13697 3079 9109 10177 2969 10859 8537 13537 8689 139 14087 8147 131
12227 9227 911 10427 10709 1229 9677 5987 6701 11177 4799 6389 461 7151 14753 761 6857 14747 4483 4201 13681 2683 5683 13999 3733 10111 8521 5233 8923 8209 14149 8053 163 14449 7759 157
9649 11887 829 10159 9967 2239 12433 3109 6823 11353 5569 5443 283 7369 14713 853 6829 14683 4751 4943 12671 5261 3023 14081 3557 9341 9467 2477 11801 8087 14057 8081 227 14627 7541 197
Attachment 14.11.17
contains miscellaneous Prime Number Magic Squares composed of 9 Pan Magic Sub Squares as generated with
procedure Priem6e3.
The obtained results regarding miscellaneous types of higher order Composed Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table: |
Type
Characteristics
Subroutine
Results
Order 9
Eight Semi Magic Border Squares
One Magic Center SquareFour Semi Magic Border Squares
Four Semi Magic Corner Squares
One Magic Center SquareFour Semi Magic Anti Symmetric Border Squares
Four Semi Magic Anti Symmetric Corner Squares
One Magic Center SquareOrder 12
Sixteen Semi Magic Sub Squares
-
Eight Semi Magic Diagonal Squares
Eight Semi Magic Border SquaresEight Semi Magic Anti Symmetric Diagonal Squares
Eight Semi Magic Anti Symmetric Border SquaresOrder 15
Eight Semi Magic Anti Symmetric Diagonal Squares
Sixteen Semi Magic Anti Symmetric Border Squares
One Magic Center SquareOrder 18
12 Semi Magic Anti Symmetric Diagonal Squares
24 Semi Magic Anti Symmetric Border SquaresNine Pan Magic Sub Squares
Comparable routines as listed above, can be used to generate miscellaneous Prime Number Inlaid Magic Squares, which will be described in following sections.
|
Index | About the Author |